Purification Or Separation Of Fullerenes Or Nanotubes Patents (Class 977/845)
  • Publication number: 20130040798
    Abstract: The separation of single-walled carbon nanotubes (SWCNTs), by electronic type, using centrifugation of compositions of SWCNTs and surface active block copolymers in self-forming density gradient media.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 14, 2013
    Applicant: Northwestern University
    Inventors: Mark C. Hersam, Jung-Woo T. Seo, Alexander Lee Antaris, Alexander A. Green
  • Patent number: 8365923
    Abstract: A method of separating at least one carbon nanotube having a desired diameter and/or chirality from a mixture of carbon nanotubes having different diameters and/or chiralities is provided. A calixarene of formula (I): wherein n?4; X is PO3H2, Ra—PO3H, SO3H, or Ra—SO3H; Y is Rb, OH, or ORb; and Ra and Rb are independently selected from the group consisting of optionally substituted alkyl, optionally substituted aryl, optionally substituted arylene alkyl and optionally substituted alkylene aryl is combined with the mixture of carbon nanotubes in an aqueous solvent to produce an aqueous supernatant containing the carbon nanotube(s) having the desired diameter and/or chirality. The aqueous supernatant containing the carbon nanotube(s) is then separated from a residue comprising the remaining carbon nanotubes of the mixture.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: February 5, 2013
    Assignee: The University of Western Australia
    Inventors: Colin Llewellyn Raston, Lee John Hubble
  • Patent number: 8367035
    Abstract: The present invention provides arrays of longitudinally aligned carbon nanotubes having specified positions, nanotube densities and orientations, and corresponding methods of making nanotube arrays using guided growth and guided deposition methods. Also provided are electronic devices and device arrays comprising one or more arrays of longitudinally aligned carbon nanotubes including multilayer nanotube array structures and devices.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: February 5, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Coskun Kocabas, Moonsub Shim, Seong Jun Kang, Jang-Ung Park
  • Patent number: 8362525
    Abstract: Field effect devices having channels of nanofabric and methods of making same. A nanotube field effect transistor is made to have a substrate, and a drain region and a source region in spaced relation relative to each other. A channel region is formed from a fabric of nanotubes, in which the nanotubes of the channel region are substantially all of the same semiconducting type of nanotubes. At least one gate is formed in proximity to the channel region so that the gate may be used to modulate the conductivity of the channel region so that a conductive path may be formed between the drain and source region. Forming a channel region includes forming a fabric of nanotubes in which the fabric has both semiconducting and metallic nanotubes and the fabric is processed to remove substantially all of the metallic nanotubes.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: January 29, 2013
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Mitchell Meinhold, Steven L. Konsek, Thomas Rueckes, Frank Guo
  • Patent number: 8361328
    Abstract: A nanotube separation method includes depositing a tag on a nanotube in a nanotube mixture. The nanotube has a defect and the tag deposits at the defect where a deposition rate is greater than on another nanotube in the mixture lacking the defect. The method includes removing the tagged nanotube from the mixture by using the tag. As one option, the tag may contain a ferromagnetic material and the removing may include applying a magnetic field. As another option, the tag may contain an ionic material and the removing may include applying an electric field. As a further option, the tag may contain an atom having an atomic mass greater than the atomic mass of carbon and the removing may include applying a centrifugal force to the nanotube mixture. Any two or more of the indicated removal techniques may be combined.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: January 29, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Publication number: 20130001068
    Abstract: A combined production-functionalization process for producing a chemically functionalized nano graphene material from a pre-intercalated, oxidized, or halogenated graphite material, comprising: (A) Producing exfoliated graphite from the pre-intercalated, oxidized, or halogenated graphite material, wherein the graphite material is selected from the group consisting of natural graphite, artificial graphite, highly oriented pyrolytic graphite, carbon fiber, graphite fiber, carbon nano-fiber, graphitic nano-fiber, meso-carbon micro-bead, graphitized coke, and combinations thereof; (B) Dispersing the exfoliated graphite and an azide or bi-radical compound in a liquid medium to form a suspension; (C) Subjecting the suspension to ultrasonication with ultrasonic waves of a desired intensity for a length of time sufficient to produce nano graphene platelets and to enable a chemical reaction to occur between the nano graphene platelets and the azide or bi-radical compound to produce the functionalized nano graphene mat
    Type: Application
    Filed: September 6, 2012
    Publication date: January 3, 2013
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20120329947
    Abstract: Various methods and systems are provided for preparing a polymer nanocomposite. In one embodiment, among others, a method includes providing a first immiscible solution including an aqueous solution including polymer-coated nanoparticles and a first monomer and a second immiscible solution including an organic solution including a second monomer. The first and second immiscible solutions are in contact along an interface. A polymer nanocomposite, including the polymer-coated nanoparticles dispersed within the polymer matrix, is extracted from the interface. In another embodiment, a system includes a vessel and an extraction assembly. The vessel includes a first immiscible solution layer in contact with a second immiscible solution layer along an interface. The first immiscible solution layer includes an aqueous solution including polymer-coated nanoparticles and a first monomer. The second immiscible solution layer includes an organic solution including a second monomer.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 27, 2012
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventor: Kirk Jeremy Ziegler
  • Publication number: 20120308471
    Abstract: Described is a method for the selective etching of single walled carbon nanotubes with CO2 where nanotubes of small diameters are removed.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 6, 2012
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Salah Boussaad, Frank M. Pellicone, Joseph Menezes
  • Publication number: 20120288433
    Abstract: A method of forming and processing of graphene is disclosed based on exposure and selective intercalation of the partially graphene-covered metal substrate with atomic or molecular intercalation species such as oxygen (O2) and nitrogen oxide (NO2). The process of intercalation lifts the strong metal-carbon coupling and restores the characteristic Dirac behavior of isolated monolayer graphene. The interface of graphene with metals or metal-decorated substrates also provides for controlled chemical reactions based on novel functionality of the confined space between a metal surface and a graphene sheet.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 15, 2012
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Peter Werner Sutter, Eli Anguelova Sutter
  • Patent number: 8308930
    Abstract: Techniques for manufacturing carbon nanotube (CNT) ropes are provided. In some embodiments, a CNT rope manufacturing method optionally includes preparing a metal tip, preparing a CNT colloid solution, immersing the metal tip into the CNT colloid solution; and withdrawing the metal tip from the CNT colloid solution.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: November 13, 2012
    Assignee: SNU R&DB Foundation
    Inventors: Yong Hyup Kim, Tae June Kang, Eui Yun Jang
  • Patent number: 8308955
    Abstract: Embodiments described herein generally relate to the separation of carbon nanotubes by reversible gelation.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: November 13, 2012
    Assignee: Empire Technology Development LLC
    Inventor: Seth Adrian Miller
  • Publication number: 20120261620
    Abstract: Functionalized carbon nanotubes and dispersions containing functionalized carbon nanotubes are provided. Exemplary functionalized carbon nanotubes include optionally substituted indene-based moieties. Methods of making functionalized carbon nanotubes and dispersions containing functionalized carbon nanotubes are provided. Methods of making conductive carbon nanotube dispersions, including films, are provided. Such methods include heating carbon nanotubes in a solvent in the absence of externally applied energy, to obtain an adduct that includes the solvent moiety bound to the carbon nanotube. Where the solvent includes an indene-based compound, the carbon nanotube thus prepared includes optionally indene-based moieties bound to the carbon nanotubes.
    Type: Application
    Filed: December 19, 2011
    Publication date: October 18, 2012
    Inventors: Henning Richter, Ramesh Sivarajan
  • Publication number: 20120251396
    Abstract: A method for sorting carbon nanotubes (CNTs) is disclosed. In one embodiment, a method for sorting CNTs of the present disclosure comprises providing to a surface of a substrate, the surface modified with a trans isomer of photo-isomerization-reactive diazo compound, a dispersion containing a mixture of conducting CNTs and semiconducting CNTs; removing CNTs which are not associated with the modified surface from the surface; and irradiating the modified surface to detach the CNTs associated with the modified surface.
    Type: Application
    Filed: June 13, 2012
    Publication date: October 4, 2012
    Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
    Inventor: Kwangyeol LEE
  • Patent number: 8273319
    Abstract: An improved method for enriched chirality of single wall carbon nanotubes is described. Genomic DNA, particularly salmon DNA (SaDNA) is shown to sort out single wall carbon nanotubes of specific chirality by a process of solubilization (dissolving in solution) and separation (such as centrifuging), without requiring more complex processes such as anion exchange chromatography. A possible reason for enhanced chirality separation using DNA may be attributed to its lowered GC (guanine-cytosine) content.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: September 25, 2012
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Sang N. Kim, Rajesh R. Naik, James G. Grote, Barry L. Farmer
  • Publication number: 20120231259
    Abstract: An apparatus is provided for harvesting a carbon nanotube array from a substrate. The apparatus includes a peeler that peels the carbon nanotube array from the substrate and a support that receives the carbon nanotube array peeled from the substrate. In addition the apparatus includes a drawing device that simultaneously draws the carbon nanotube array from the substrate onto the support as the carbon nanotube array is peeled from the substrate. The peeler and drawing device are synchronized in operation so that as a given length of carbon nanotube array is peeled from the substrate, that same given length of carbon nanotube array is drawn onto the support.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 13, 2012
    Inventors: Mathew C. Weisenberger, John D. Craddock
  • Patent number: 8258060
    Abstract: The sheet structure includes a plurality of linear structure bundles including a plurality of linear structures of carbon atoms arranged at a first gap, and arranged at a second gap larger than the first gap, a graphite layer formed in a region between the plurality of linear structure bundles and connected to the plurality of linear structure bundles, and a filling layer filled in the first gap and the second gap and retaining the plurality of linear structure bundles and the graphite layer.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: September 4, 2012
    Assignee: Fujitsu Limited
    Inventors: Daiyu Kondo, Taisuke Iwai, Yoshitaka Yamaguchi, Ikuo Soga
  • Publication number: 20120217151
    Abstract: A photoresponsive ionic organic compound of formula (I); a method of producing the same; a photoresponsive carbon nanotube (CNT) dispersant; a CNT dispersion containing the dispersant; and a method of separating a CNT from the dispersion: wherein R1, R2, and R3 each represent a hydrogen atom or an alkyl group; A represents —CH— or a nitrogen atom; X represents an anion; and n is a number to give a charge of ?2 to nX.
    Type: Application
    Filed: October 26, 2010
    Publication date: August 30, 2012
    Inventors: Yoko Matsuzawa, Masaru Yoshida, Harumi Ohyama, Haruhisa Kato
  • Patent number: 8246928
    Abstract: Embodiments herein describe a composition including at least one water-soluble complex having a water-soluble separation agent including a planar portion, at least one pi electron on the planar portion and at least one electron withdrawing group; and a semiconducting single-walled carbon nanotube in an aqueous solution. Further embodiments describe a method of separating metallic single-walled carbon nanotubes and semiconducting single-walled carbon nanotubes including providing carbon nanotubes having an admixture of semiconducting single-walled carbon nanotubes and metallic single-walled carbon nanotubes; and combining the admixture with a water-soluble separation agent in an aqueous solution to form a mixture, in which the water-soluble separation agent includes a planar portion, at least one pi electron on the planar portion and at least one electron withdrawing group.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: August 21, 2012
    Assignee: Jawaharlal Nehru Centre for Advanced Scientific Research
    Inventors: Chintamani Nagesa Ramachandra Rao, Subi Jacob George, Rakesh Voggu, K. Venkata Rao
  • Patent number: 8246886
    Abstract: A method and system for aligning nanotubes within an extensible structure such as a yarn or non-woven sheet. The method includes providing an extensible structure having non-aligned nanotubes, adding a chemical mixture to the extensible structure so as to wet the extensible structure, and stretching the extensible structure so as to substantially align the nanotubes within the extensible structure. The system can include opposing rollers around which an extensible structure may be wrapped, mechanisms to rotate the rollers independently or away from one another as they rotate to stretch the extensible structure, and a reservoir from which a chemical mixture may be dispensed to wet the extensible structure to help in the stretching process.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: August 21, 2012
    Assignee: Nanocomp Technologies, Inc.
    Inventors: David S. Lashmore, Robert Braden, Anastasios John Hart, John Welch
  • Publication number: 20120202056
    Abstract: The present invention relates to composites having graphene layers and also processes for producing these composites. The invention further relates to a process for producing graphene layers using the composites of the invention.
    Type: Application
    Filed: October 11, 2010
    Publication date: August 9, 2012
    Applicant: BAYER TECHNOLOGY SERVICES
    Inventors: Aurel Wolf, Giulio Lolli, Leslaw Mleczko, Oliver Felix-Karl Schlüter
  • Patent number: 8231854
    Abstract: An efficient and cost-effective method for treating carbon nanotubes (CNTs) is provided. The method includes comprising: dispersing said carbon nanotubes in a dispersing medium to prepare a dispersion system; mixing said dispersion system with adsorbent so that type-specific carbon nanotubes contained in said dispersion system are absorbed onto the adsorbent, wherein the adsorbent is modified by a chemical/biological modifier so as to have different adsorption selectivity to carbon nanotubes of different types; and separating the adsorbent from the dispersion system, whereby the type-specific carbon nanotubes adsorbed onto the adsorbent is separated from the carbon nanotubes of another type enriched in the dispersion system; carbon nanotubes produced by the treatment method, and CNTs devices comprising thereof.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: July 31, 2012
    Assignee: Sony Corporation
    Inventors: Hisashi Kajiura, Yongming Li, Xianglong Li, Yunqi Liu, Lingchao Cao, Lei Fu, Dacheng Wei, Yu Wang, Daoben Zhu
  • Patent number: 8221592
    Abstract: A method for sorting carbon nanotubes (CNTs) is disclosed. In one embodiment, a method for sorting CNTs of the present disclosure comprises providing to a surface of a substrate, the surface modified with a trans isomer of photo-isomerization-reactive diazo compound, a dispersion containing a mixture of conducting CNTs and semiconducting CNTs; removing CNTs which are not associated with the modified surface from the surface; and irradiating the modified surface to detach the CNTs associated with the modified surface.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: July 17, 2012
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Publication number: 20120177560
    Abstract: A method of processing bundles of carbon nanotubes (CNTs). Bundles of CNTs are put into a solution and unbundled using sonication and one or more surfactants that break apart and disperse at least some of the bundles into the solution such that it contains individual semiconducting CNTs, individual metallic CNTs, and remaining CNT bundles. The individual CNTs are separated from each other using agarose bead column separation using sodium dodecyl sulfate as a surfactant. Remaining CNT bundles are then separated out by performing density-gradient ultracentrifugation.
    Type: Application
    Filed: June 3, 2011
    Publication date: July 12, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Stephen R. Forrest, Jeramy D. Zimmerman
  • Patent number: 8206624
    Abstract: A method for producing carbon nanotubes uses a polymer as a raw material to undergo in situ thermal decomposition. The method includes steps of mixing the polymer and metallic catalyst through a multiple heating stage process of in-situ thermal decomposition to carbonize the polymer and release carbon elements to produce carbon nanotubes. Advantages of the present invention include easy to prepare, low temperature in manipulation, low production cost, and high safety.
    Type: Grant
    Filed: February 7, 2009
    Date of Patent: June 26, 2012
    Assignee: National Chung Cheng University
    Inventors: Yuan-Yao Li, Chao-Wei Huang
  • Patent number: 8197789
    Abstract: Metallic carbon nanotubes (“CNTs”) may be selectively eliminated and semiconducting CNTs may be prepared using light-irradiation. The light provided by the light-irradiation may have a wavelength of about 180 nm to about 11 ?m. Further, the light may have an intensity of about 30 mW/cm2 to about 300 mW/cm2. The light-irradiation may be simple and controllable, and may not require any special instruments except a light source.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 12, 2012
    Assignees: Samsung Electronics Co., Ltd., Peking University
    Inventors: Jin Zhang, Yi Zhang, Yongyi Zhang, Zhongfan Liu
  • Patent number: 8198403
    Abstract: The present invention includes compositions and methods for the isolation, separation and chelation of Carbon Nanotubes (CNTs) using a cyclizable peptide.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: June 12, 2012
    Assignee: Board of Regents, The University of Texas System
    Inventors: Gregg R. Dieckmann, Alfonzo Ortiz-Acevedo, Ray Baughman, Alan B. Dalton, Rockford K. Draper, Inga H. Musselman
  • Patent number: 8193430
    Abstract: Disclosed herein too is a method that includes dispersing nanotubes in media that comprises flavin moieties substituted with solubilizing side chains, and/or non-flavin containing molecular species; self-assembling the flavin moieties and other non-flavin containing molecular species in a pattern that is orderly wrapped around the nanotubes to form a composite; introducing desired amounts of an optional reagent that competes with self-assembly in order to disturb the wrapping around nanotubes with moderate order; and centrifuging the mass of the nanotubes and the composites to extract the composite from other nanotubes that are not in composite form.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: June 5, 2012
    Assignee: The University of Connecticut
    Inventors: Fotios Papadimitrakopoulos, Sang-Yong Ju
  • Publication number: 20120132358
    Abstract: A method for removing a carbonization catalyst from a graphene sheet, the method includes contacting the carbonization catalyst with a salt solution, which is capable of oxidizing the carbonization catalyst.
    Type: Application
    Filed: February 2, 2012
    Publication date: May 31, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jaeyoung CHOI, Keun Soo KIM, Byung Hee HONG
  • Patent number: 8182783
    Abstract: A novel microwave-assisted process is described for the rapid removal of catalytic metal and non-desirable carbon impurities in fullerene, single wall, and multiple wall carbon nanotube preparations. The purification process is carried out at various programmed pressures, power levels and reaction times in a suspension of the nanocarbon moieties in the presence of strong acids (for example, a mixture of sulfuric acid and nitric acid), in weak acids (for example, acetic acid) and in the presence of chelating agents (for example, EDTA—ethylenediaminetetraacetic acid). In one embodiment, high metal removal efficiency of 70 to 90% is observed.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: May 22, 2012
    Assignee: New Jersey Institute of Technology
    Inventors: Somenath Mitra, Yuhong Chen
  • Publication number: 20120114549
    Abstract: A method for separating metal carbon nanotubes with a single graphene layer (m-SWNT) and semiconductor nanotubes with a single graphene layer (sc-SWNT) is provided. The method may comprise a step for grafting, notably by radical chemical grafting, a diazonium salt derivative on a mixture of m-SWNTs and sc-SWNTs so as to obtain a mixture of grafted m-SWNTs, and non-grafted sc-SWNTs, whereby the grafted m-SWNTs and the non-grafted sc-SWNTs separate because of differential chemical and/or physical properties caused by said grafting. In addition, a kit for separating m-SWNTs and sc-SWNTs is provided.
    Type: Application
    Filed: February 8, 2010
    Publication date: May 10, 2012
    Applicant: Commissariat a l"energie atomique et aux energies alternatives
    Inventor: Pascale Chenevier
  • Publication number: 20120103809
    Abstract: A method for separating a nanocarbon material includes a step in which a dispersion solution of the nanocarbon material which is dispersed into nanocarbon micelle groups having a plurality of different electric charges, and a retaining solution having a different specific gravity from the nanocarbon material, are introduced into an electrophoresis tank to form a layered state disposed in layers in a predetermined direction; and a step separating the nanocarbon micelle groups into at least two nanocarbon micelle groups by means of applying direct current voltage in series across the dispersion solution and the retaining solution which had both been introduced and disposed in layers.
    Type: Application
    Filed: June 23, 2010
    Publication date: May 3, 2012
    Applicant: NEC CORPORATION
    Inventors: Kazuki Ihara, Fumiyuki Nihey
  • Publication number: 20120104328
    Abstract: According to example embodiments, a method includes dispersing carbon nanotubes in a mixed solution containing a solvent, the carbon nanotubes, and a dispersant, the carbon nanotubes including semiconducting carbon nanotubes, the dispersant comprising a polythiophene derivative including a thiophene ring and a hydrocarbon sidechain linked to the thiophene ring. The hydrocarbon sidechain includes an alkyl group containing a carbon number of 7 or greater. The hydrocarbon sidechain may be regioregularly arranged, and the semiconducting carbon nanotubes are selectively separated from the mixed solution. An electronic device includes semiconducting carbon nanotubes and the foregoing described polythiophene derivative.
    Type: Application
    Filed: October 27, 2011
    Publication date: May 3, 2012
    Applicants: The Board of Trustees of the Leland Stanford Junior University, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-jun Park, Jong-min Kim, Hang-Woo Lee, Zhenan Bao
  • Publication number: 20120095143
    Abstract: A method for dispersing nanotubes, comprising forming a nanocomposite solution with associated nanotubes and nanoplatelets, mixing a surfactant to the nanocomposite solution, separating the nanocomposite in solution, wherein the nanotubes remain suspended in the surfactant solution, and isolating the nanotubes in solution. In certain instances, the method further comprises functionalizing the nanotubes in solution.
    Type: Application
    Filed: December 28, 2010
    Publication date: April 19, 2012
    Applicants: KANEKA TEXAS CORPORATION, THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Hung-Jue Sue, Xi Zhang, Riichi Nishimura
  • Publication number: 20120082594
    Abstract: Provided is a continuous method and apparatus of purifying carbon nanotubes. The continuous method and apparatus of purifying carbon nanotubes is characterized in a first purifying step for injecting a carbon nanotube liquid mixture containing an oxidizer into a purifying reactor under a sub-critical water or supercritical water condition at a pressure of 50 to 400 atm and a temperature of 100 to 600° C. to obtain a purified product, thereby removing amorphous carbon and producing the carbon nanotube product.
    Type: Application
    Filed: December 12, 2011
    Publication date: April 5, 2012
    Applicant: HANWHA CHEMCIAL CORPORATION
    Inventors: Joo Hee HAN, Jin Seo LEE, Seung-Hoe DO, Seong Cheol HONG
  • Publication number: 20120082613
    Abstract: The present invention provides a method for producing a carbon nanotube having a high purity and a method for purifying an unpurified carbon nanotube or a carbon nanotube having a low purity. The method for producing a carbon nanotube comprises a step of providing a carbonaceous material containing a carbon nanotube and a step of adding an iron material and hydrogen peroxide to the carbonaceous material to thereby purity a carbon nanotube. It is preferred that an iron powder is used as the iron material. The iron powder is preferably used in a proportion of 0.5 to 20 parts by mass relative to 100 parts by mass of the whole carbonaceous material.
    Type: Application
    Filed: September 6, 2011
    Publication date: April 5, 2012
    Applicant: Meijo University
    Inventors: Yoshinori Ando, Xinluo Zhao, Sakae Inoue
  • Publication number: 20120058889
    Abstract: Disclosed is a composition containing carbon nanotubes which meets all of the following conditions (1) to (4). (1) When observed via transmission electron microscopy, at least 50 out of every 100 carbon nanotubes are double-walled carbon nanotubes. (2) The carbon nanotubes have an average outer diameter in the range of 1.0 to 3.0 nm. (3) During thermogravimetric analysis under atmosphere at a temperature increase rate of 10° C./minute, a high temperature combustion peak is at 700 to 850° C., and the relationship between low temperature weight loss (TG(L)) and high temperature weight loss (TG(H)) is TG(H)/(TG(L)+TG(H))?0.75. (4) The composition containing carbon nanotubes has a volume resistance value between 1.0×10?2 ?·cm and 1.0×10?4 ?·cm, inclusive. The disclosed composition containing carbon nanotubes primarily has double-walled carbon nanotubes with high electrical conductivity and high heat resistance.
    Type: Application
    Filed: March 4, 2010
    Publication date: March 8, 2012
    Inventors: Hidekazu Nishino, Hajime Kato, Naoyo Okamoto, Shuko Ikeuchi, Kenichi Sato, Shiho Tanaka, Kazuyoshi Higuchi
  • Patent number: 8124045
    Abstract: The present invention provides a method of selectively extracting metallic armchair carbon nanotubes alone from the mixture of carbon nanotubes of mixed chiralities, wherein vacant lattice defects are removed from armchair carbon nanotubes alone using the fact that the vacant lattice defects of zigzag carbon nanotubes are hard to diffuse in the axial direction of nanotubes compared with those of armchair carbon nanotubes. Since vacant lattice defects remaining on zigzag carbon nanotubes are active, the tube structures are easily destroyed and decomposed by oxidation etc. Thus it is possible to extract armchair carbon nanotubes alone from the mixture of carbon nanotubes of mixed chiralities.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: February 28, 2012
    Assignee: NEC Corporation
    Inventors: Takazumi Kawai, Yoshiyuki Miyamoto
  • Patent number: 8119504
    Abstract: A method for transferring a nano material formed on a first substrate through deposition techniques to a second substrate, includes: (A) contacting the second substrate with a free end of the nano material on the first substrate; (B) heating the first substrate so that heat is conducted substantially from the first substrate through the nano material to the second substrate to soften a contact portion of a surface of the second substrate that is in contact with the free end of the nano material; (C) after step (B), cooling the second substrate so as to permit hardening of the contact portion of the surface of the second substrate and solid bonding of the nano material to the second substrate; and (D) after step (C), removing the first substrate from the nano material.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: February 21, 2012
    Inventors: Nyan-Hwa Tai, Tsung-Yen Tsai
  • Publication number: 20120037840
    Abstract: Methods and compositions for removing a contaminant from its environment. The method includes forming a magnetic composition comprising the contaminant and an amphiphilic substance, and applying a magnetic field to the magnetic composition so as to separate the magnetic composition from the environment. One composition includes a micelle array confined in a magnetic mesoporous framework. Another composition is formed by adhering an amphiphilic material comprising functional surface groups to a contaminant, then interacting a magnetic material with the functional surface groups of the amphiphilic material. In various versions, the contaminant can be a hydrophobic organic compound, or a fullerene-related nanoparticle. The methods can also be used to purify hydrophobic organic compounds or fullerene-related nanoparticles.
    Type: Application
    Filed: February 25, 2009
    Publication date: February 16, 2012
    Inventors: Galen Stucky, Arturo A. Keller, Yifeng Shi, Peng Wang, Qihui Shi, Hongjun Liang
  • Publication number: 20120039790
    Abstract: A nanotube separation method includes depositing a tag on a nanotube in a nanotube mixture. The nanotube has a defect and the tag deposits at the defect where a deposition rate is greater than on another nanotube in the mixture lacking the defect. The method includes removing the tagged nanotube from the mixture by using the tag. As one option, the tag may contain a ferromagnetic material and the removing may include applying a magnetic field. As another option, the tag may contain an ionic material and the removing may include applying an electric field. As a further option, the tag may contain an atom having an atomic mass greater than the atomic mass of carbon and the removing may include applying a centrifugal force to the nanotube mixture. Any two or more of the indicated removal techniques may be combined.
    Type: Application
    Filed: October 18, 2011
    Publication date: February 16, 2012
    Applicant: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 8110125
    Abstract: The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: February 7, 2012
    Assignee: Northwestern University
    Inventors: Mark C. Hersam, Samuel I. Stupp, Michael S. Arnold
  • Publication number: 20120025150
    Abstract: The separation of single-walled carbon nanotubes (SWNTs), by electronic type using centrifugation of compositions of SWNTs and surface active block copolymers in density gradient media.
    Type: Application
    Filed: May 31, 2011
    Publication date: February 2, 2012
    Inventors: Mark C. Hersam, Alexander L. Antaris, Alexander A. Green
  • Patent number: 8101149
    Abstract: C60 and C70 carbon atom compounds are prepared by evaporating graphite in an inert quenching gas. The vapor of carbon is collected and is selectively extracted with an organic non-polar solvent.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 24, 2012
    Assignee: Mitsubishi Corporation
    Inventors: Donald R. Huffman, Wolfgang Krätschmer
  • Patent number: 8093174
    Abstract: A carbon nanohorn (CNH) is oxidized to make an opening in the side of the CNH. A substance to be included, e.g., a metal, is introduced through the opening. The inclusion substance is moved to a tip part of the carbon nanohorn through heat treatment in vacuum or an inert gas. The CNH is further heat treated in an atmosphere containing oxygen in a low concentration to remove the carbon layer in the tip through catalysis of the inclusion substance. This exposes the inclusion substance. If the inclusion substance is a metal which is not moved to a tip part by the heat treatment in vacuum or an inert gas, the carbon part surrounding the fine catalyst particle is specifically burned by a heat treatment in an low oxygen concentration atmosphere, while utilizing the catalysis. Thus, the fine catalyst particle is fixed to the tip part of the CNH.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: January 10, 2012
    Assignee: NEC Corporation
    Inventors: Ryota Yuge, Masako Yudasaka, Sumio Iijima
  • Publication number: 20110318248
    Abstract: We have discovered that size dependent solubility of large fullerenes in strong acids is dependent on acid strength. This provides a scalable method for separating large fullerenes by size. According to some embodiments, a method for processing a fullerene starting material comprises large fullerenes comprises mixing the starting material with a first concentrated sulfuric acid solution so as to obtain a first dispersion comprising a first portion of the large fullerenes solubilized in the first concentrated sulfuric acid solution.
    Type: Application
    Filed: August 8, 2008
    Publication date: December 29, 2011
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Pradeep K. Rai, A. Nicholas Parra-Vasquez, Haiqing Peng, Robert Hauge, Matteo Pasquali
  • Patent number: 8080314
    Abstract: Methods and articles providing for precise aligning, positioning, shaping, and linking of nanotubes and carbon nanotubes. An article comprising: a solid surface comprising at least two different surface regions including: a first surface region which comprises an outer boundary and which is adapted for carbon nanotube adsorption, and a second surface region which is adapted for preventing carbon nanotube adsorption, the second region forming an interface with the outer boundary of the first region, at least one carbon nanotube which is at least partially selectively adsorbed at the interface. The shape and size of the patterns on the surface and the length of the carbon nanotube can be controlled to provide for selective interfacial adsorption.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: December 20, 2011
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Yuhuang Wang, Daniel Maspoch
  • Patent number: 8066967
    Abstract: A system and method for the manipulation of nanofibers using electrostatic forces. The nanofibers may be provided in a liquid medium, and the nanofibers may be nano-scale (i.e. measured in nanometers). The process is sensitive to the charge properties of the nanofibers (charge could be inherent to material or the charge can be induced into the material through electrochemical means), and therefore may be used to sort or classify particles. The nanofibers may also be aligned according to electrical fields, and thus anisotropic effect exploited. Devices produced may be conductors, semiconductors, active electronic devices, electron emitters, and the like. The nanofibers may be modified after deposition, for example to remove charge-influencing coatings to further enhance their performance, to enhance their adhesion to polymers for use as composite materials or result in the adhesion of the material at the proper location on a variety of different surfaces.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: November 29, 2011
    Assignee: Electrox Corporation
    Inventors: Dietmar C Eberlein, Robert H Detig
  • Publication number: 20110287258
    Abstract: A method for dispersing nanotubes, comprising contacting the nanotubes with an electronic liquid comprising a metal and an amine solvent, a solution of dispersed nanotuhes, comprising individual nanotuhes at a concentration of greater than about 0.01 mgml?1 and a solvent and a nanotube crystal comprising a close packed array of nanotubes, wherein the crystal has a thickness of 100 nm or more are described.
    Type: Application
    Filed: July 3, 2009
    Publication date: November 24, 2011
    Applicants: IMPERIAL INNOVATIONS LTD., UCL BUSINESS PLC
    Inventors: Christopher Howard, Skipper Neal, Milo Shaffer, Sian Fogden
  • Publication number: 20110280791
    Abstract: To provide a method for separating metallic CNT and semiconducting CNT by treating a CNT-containing gel or a CNT dispersion as combined with a gel, according to a physical separation means to thereby make semiconducting CNT exist in gel and metallic CNT exist in solution, in which the semiconducting CNT adsorbed by gel are collected in a more simplified manner not dissolving the gel. A CNT-containing gel or a CNT dispersion combined with a gel is treated according to a physical separation means of a centrifugal method, a freezing squeezing method, a diffusion method or a permeation method, to thereby make semiconducting CNT exist in gel and metallic CNT exist in solution so that the metallic CNT and the semiconducting CNT are separated from each other, and further, a suitable eluent is made to react on the gel that adsorbs semiconducting CNT to elute the semiconducting CNT from the gel.
    Type: Application
    Filed: June 22, 2010
    Publication date: November 17, 2011
    Inventors: Takeshi Tanaka, Hiromichi Kataura, Huaping Liu
  • Patent number: 8057686
    Abstract: A nanotube separation method includes depositing a tag on a nanotube in a nanotube mixture. The nanotube has a defect and the tag deposits at the defect where a deposition rate is greater than on another nanotube in the mixture lacking the defect. The method includes removing the tagged nanotube from the mixture by using the tag. As one option, the tag may contain a ferromagnetic material and the removing may include applying a magnetic field. As another option, the tag may contain an ionic material and the removing may include applying an electric field. As a further option, the tag may contain an atom having an atomic mass greater than the atomic mass of carbon and the removing may include applying a centrifugal force to the nanotube mixture. Any two or more of the indicated removal techniques may be combined.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: November 15, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu