Purification Or Separation Of Fullerenes Or Nanotubes Patents (Class 977/845)
  • Publication number: 20110274611
    Abstract: A method for removing impurities from carbon nanotubes is described. Impurities may be removed from the carbon nanotubes by exposing the carbon nanotubes to a temperature, and controlling the temperature such that the temperature is constantly increasing to remove at least a portion of the impurities from the carbon nanotubes.
    Type: Application
    Filed: November 11, 2009
    Publication date: November 10, 2011
    Applicant: Temple University - of the Commonwealth System of Higher Education
    Inventors: Nikolay N. Dementev, Eric U. Borguet
  • Publication number: 20110250376
    Abstract: The present invention provides efficient methods for producing a superhydrophobic carbon nanotube (CNT) array. The methods comprise providing a vertically aligned CNT array and performing vacuum pyrolysis on the CNT array to produce a superhydrophobic CNT array. These methods have several advantages over the prior art, such as operational simplicity and efficiency. The invention also relates to superhydrophobic CNT arrays.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 13, 2011
    Applicant: California Institute of Technology
    Inventors: Adrianus I. Aria, Masoud Beizai, Morteza Gharib
  • Patent number: 8021640
    Abstract: Techniques and apparatuses for making carbon nanotube (CNT) papers are provided. In one embodiment, a method for making a CNT paper may include disposing a structure having an edge portion including a relatively sharp edge into a CNT colloidal solution and withdrawing the structure from the CNT colloidal solution.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: September 20, 2011
    Assignee: SNU R&DB Foundation
    Inventors: Yong Hyup Kim, Eui Yun Jang
  • Publication number: 20110209816
    Abstract: A method for removing a carbonization catalyst from a graphene sheet, the method includes contacting the carbonization catalyst with a salt solution, which is capable of oxidizing the carbonization catalyst.
    Type: Application
    Filed: May 16, 2011
    Publication date: September 1, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jaeyoung CHOI, Keun Soo KIM, Byung Hee HONG
  • Publication number: 20110204300
    Abstract: [Description] A method for producing a metallic carbon nanotube, by which a dispersion with a high concentration can be obtained. Specifically disclosed is a method for producing a metallic carbon nanotube, which comprises a fullerene addition step wherein fullerenes are added into a carbon nanotube-containing solution in which metallic carbon nanotubes and semiconductive carbon nanotubes are mixed, and a taking-out step wherein carbon nanotubes dispersed by the added fullerenes are taken out.
    Type: Application
    Filed: October 22, 2009
    Publication date: August 25, 2011
    Applicant: Kuraray Co., Ltd.
    Inventor: Takahiro Kitano
  • Publication number: 20110198559
    Abstract: A method is provided for growth of carbon nanotube (CNT) synthesis at a low temperature. The method includes preparing a catalyst by placing the catalyst between two metal layers of high chemical potential on a substrate, depositing such placed catalyst on a surface of a wafer, and reactivating the catalyst in a high vacuum at a room temperature in a catalyst preparation chamber to prevent a deactivation of the catalyst. The method also includes growing carbon nanotubes on the substrate in the high vacuum in a CNT growth chamber after preparing the catalyst.
    Type: Application
    Filed: April 25, 2011
    Publication date: August 18, 2011
    Applicant: STMICROELECTRONICS ASIA PACIFIC PTE LTD
    Inventors: Shanzhong Wang, Mui Hoon Nai, Zhonglin Miao
  • Publication number: 20110186516
    Abstract: This invention provides a process for producing a carbon nanotube fragment. In particular, this invention provides a method of producing a carbon nanotube fragment by the steps of 1) dispersing a carbon nanotube in a mixed acid of sulfuric acid and nitric acid, and 2) subjecting the dispersed carbon nanotube to an oxidation treatment to obtain a dispersion of carbon nanotube fragment in the mixed acid. Preferably, in the oxidation treatment the dispersed carbon nanotube is oxidized with a hydrogen peroxide added in the mixed acid.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 4, 2011
    Applicant: BIOSENSOR INCORPORATED
    Inventors: Seiji TAKEDA, Koichi MUKASA, Atsushi ISHII
  • Publication number: 20110180968
    Abstract: A method for making a carbon nanotube metal composite includes the following steps. A number of carbon nanotubes is dispersed in a solvent to obtain a suspension. Metal powder is added into the suspension, and then the suspension agitated. The suspension containing the metal powder is allowed to stand for a while. The solvent is reduced to obtain a mixture of the number of carbon nanotubes and the metal powder.
    Type: Application
    Filed: October 15, 2010
    Publication date: July 28, 2011
    Applicants: TSINGHUA UNIVERSITY, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: CHUN-HUA HU, CHANG-HONG LIU, SHOU-SHAN FAN
  • Patent number: 7976813
    Abstract: C60 and C70 carbon atom compounds are prepared by evaporating graphite in an inert quenching gas. The vapor of carbon is collected and is selectively extracted with an organic non-polar solvent.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 12, 2011
    Assignee: Mitsubishi Corporation
    Inventors: Donald R. Huffman, Wolfgang Krätschmer
  • Publication number: 20110142743
    Abstract: A method and system are disclosed for separating single-walled carbon nanotubes from double and multi-walled carbon nanotubes by using the difference in the buoyant density of Single-Walled versus Multi-Walled carbon nanotubes. In one embodiment, the method comprises providing a vessel with first and second solutions. The first solution comprises a quantity of carbon nanotubes, including single-walled carbon nanotubes and double and multi-walled carbon nanotubes. The single walled nanotubes have a first density, the double and multi-walled nanotubes having a second density. The second solution in the vessel has a third density between said first and second densities. The vessel is centrifuged to form first and second layers in the vessel, with the second solution between said first and second layers. The single-walled carbon nanotubes are predominantly in the first layer, and the second and multi-walled carbon nanotubes are predominantly in the second layer.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 16, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ageeth A. Bol, George S. Tulevski
  • Patent number: 7959779
    Abstract: This invention relates generally to cutting single-wall carbon nanotubes (SWNT). In one embodiment, the present invention provides for preparations of homogeneous populations of short carbon nanotube molecules by cutting and annealing (reclosing) the nanotube pieces followed by fractionation. The cutting and annealing processes may be carried out on a purified nanotube bucky paper, on felts prior to purification of nanotubes or on any material that contains single-wall nanotubes. In one embodiment, oxidative etching with concentrated nitric acid is employed to cut SWNTs into shorter lengths. The annealed nanotubes may be disbursed in an aqueous detergent solution or an organic solvent for the fractionation. Closed tubes can also be derivatized to facilitate fractionation, for example, by adding solubilizing moieties to the end caps.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: June 14, 2011
    Assignee: William Marsh Rice University
    Inventors: Daniel T. Colbert, Honglie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley, Jie Liu, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20110132810
    Abstract: A process of sorting metallic single wall carbon nanotubes (SWNTs) from semiconducting types by disposing the SWNTs in a dilute fluid, exposing the SWNTs to a dipole-inducing magnetic field which induces magnetic dipoles in the SWNTs so that a strength of a dipole depends on a conductivity of the SWNT containing the dipole, orienting the metallic SWNTs, and exposing the SWNTs to a magnetic field with a spatial gradient so that the oriented metallic SWNTs drift in the magnetic field gradient and thereby becomes spatially separated from the semiconducting SWNTs. An apparatus for the process of sorting SWNTs is disclosed.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 9, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Cooper Wainerdi, Robert Reid Doering, Luigi Colombo
  • Patent number: 7955585
    Abstract: Separation of carbon nanotubes or fullerenes according to diameter through non-covalent pi-pi interaction with molecular clips is provided. Molecular clips are prepared by Diels-Alder reaction of polyacenes with a variety of dienophiles. The pi-pi complexes of carbon nanotubes with molecular clips are also used for selective placement of carbon nanotubes and fullerenes on substrates.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Cherie R. Kagan, Rudolf Tromp
  • Patent number: 7939047
    Abstract: The present invention is directed to methods of separating carbon nanotubes (CNTs) by their electronic type (e.g., metallic, semi-metallic, and semiconducting). Perhaps most generally, in some embodiments, the present invention is directed to methods of separating CNTs by bandgap, wherein such separation is effected by interacting the CNTs with a surface such that the surface interacts differentially with the CNTs on the basis of their bandgap, or lack thereof. In some embodiments, such methods can allow for such separations to be carried out in bulk quantities.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: May 10, 2011
    Assignee: William Marsh Rice University
    Inventors: James M. Tour, Christopher A. Dyke, Austen K. Flatt
  • Publication number: 20110100795
    Abstract: Purified single-walled carbon nanotubes are created by placing a sample of unpurified single-walled carbon nanotubes in a chamber and irradiating the sample of unpurified single-walled carbon nanotubes in the chamber with a microwave field. Each purified single-walled carbon nanotube created is a semiconductor.
    Type: Application
    Filed: July 1, 2010
    Publication date: May 5, 2011
    Applicant: Raytheon Company
    Inventor: Timothy J. Imholt
  • Publication number: 20110073010
    Abstract: Processes are provided for removing metal-based catalyst residues from carbon nanotubes by contacting the carbon nanotubes with an active metal agent and carbon monoxide.
    Type: Application
    Filed: December 2, 2010
    Publication date: March 31, 2011
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventor: Steven Dale Ittel
  • Publication number: 20110042618
    Abstract: Systems and methods related to handling and/or isolating nanotubes and other nanostructures are generally described. In some embodiments, a polymer can be exposed to a collection of agglomerated nanostructures to produce individuated nanostructures. The polymer can comprise one or more pendant groups capable of participating in a pi-pi interaction with at least a portion of the agglomerated nanostructures to produce individuated nanostructures. Individuated nanostructures can be isolated from nanostructures that remain agglomerated. In some cases, individuated nanostructures can be freeze dried to provide, for example, a plurality of nanostructures in solid form. The systems and methods described herein may be so effective in maintaining separation between individuated nanostructures that pluralities of dried nanostructures can be re-suspended in a fluid after they are dried, in some cases with relatively low forces applied during re-suspension.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 24, 2011
    Applicant: Massachusetts Institute of Techonology
    Inventors: Michael S. Strano, Woo-Jae Kim, Paul W. Barone
  • Patent number: 7887773
    Abstract: A method for treating carbon nanotubes is provided. In the method for treating carbon nanotubes (CNTs), the CNTs are treated with SO3 gas at an elevated temperature, for example, at a temperature in the range of 385° C. to 475° C.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: February 15, 2011
    Assignee: Sony Corporation
    Inventors: Hisashi Kajiura, Yongming Li, Hongliang Zhang, Yunqi Liu, Lingchao Cao, Xianglong Li, Dacheng Wei, Yu Wang, Dachuan Shi
  • Patent number: 7883685
    Abstract: Separation of carbon nanotubes or fullerenes according to diameter through non-covalent pi-pi interaction with molecular clips is provided. Molecular clips are prepared by Diels-Alder reaction of polyacenes with a variety of dienophiles. The pi-pi complexes of carbon nanotubes with molecular clips are also used for selective placement of carbon nanotubes and fullerenes on substrates.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: February 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Cherie R. Kagan, Rudolf Tromp
  • Publication number: 20110028315
    Abstract: Peptides have been generated that have binding affinity to carbon nanostructures and particularly carbon nanotubes. Peptides of or the invention are generally about twelve amino acids in length. Methods for generating carbon nanotube binding peptides are also disclosed.
    Type: Application
    Filed: October 1, 2010
    Publication date: February 3, 2011
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: ANAND JAGOTA, STEVEN RAYMOND LUSTIG, SIQUN WANG, HONG WANG
  • Publication number: 20110028316
    Abstract: Peptides have been generated that have binding affinity to carbon nanostructures and particularly carbon nanotubes. Peptides of or the invention are generally about twelve amino acids in length. Methods for generating carbon nanotube binding peptides are also disclosed.
    Type: Application
    Filed: October 1, 2010
    Publication date: February 3, 2011
    Applicant: E. I. Du Pont De Nemours and Company
    Inventors: Anand JAGOTA, Steven Raymond Lustig, Siqun Wang, Hong Wang
  • Publication number: 20110021348
    Abstract: Peptides have been generated that have binding affinity to carbon nanostructures and particularly carbon nanotubes. Peptides of or the invention are generally about twelve amino acids in length. Methods for generating carbon nanotube binding peptides are also disclosed.
    Type: Application
    Filed: October 1, 2010
    Publication date: January 27, 2011
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: ANAND JAGOTA, STEVEN RAYMOND LUSTIG, SIQUN WANG, HONG WANG
  • Patent number: 7867469
    Abstract: Separation of carbon nanotubes or fullerenes according to diameter through non-covalent pi-pi interaction with molecular clips is provided. Molecular clips are prepared by Diels-Alder reaction of polyacenes with a variety of dienophiles. The pi-pi complexes of carbon nanotubes with molecular clips are also used for selective placement of carbon nanotubes and fullerenes on substrates.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: January 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Cherie R. Kagan, Rudolf Tromp
  • Publication number: 20100326891
    Abstract: In embodiments of the invention, bundles of carbon nanotubes are separated from individual nanotubes via interfacial trapping of bundled carbon nanotube bundles at an emulsion interface between suspension-phase and a solution-phase. The separation method comprises dispersing a mixture of individual and bundled carbon nanotubes in a solution comprising surfactant; adding at least one solvent to the surfactant solution to form a two-phase mixture; agitating the two-phase mixture to form an emulsion interface between the solution-phase and a suspension-phase, where nanotube bundles selectively segregate to the emulsion interface. Single-walled carbon nanotube suspensions exhibit strong fluorescence, which can be used to assess the degree of separation and determine if a repeated extraction of any remaining bundled carbon nanotubes remaining in the suspension-phase is desired. In another embodiment of the invention, separation of carbon nanotubes by type is carried out by interfacial trapping.
    Type: Application
    Filed: September 12, 2008
    Publication date: December 30, 2010
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION INC.
    Inventors: Kai-Wei Wang, Ryan David Reeves, Kirk Jeremy Ziegler
  • Patent number: 7842955
    Abstract: A method of forming a single wall thickness (SWT) carbon nanotube (CNT) transistor with a controlled diameter and chirality is disclosed. A photolithographically defined single crystal silicon seed layer is converted to a single crystal silicon carbide seed layer. A single layer of graphene is formed on the top surface of the silicon carbide. The SWT CNT transistor body is grown from the graphene layer in the presence of carbon containing gases and metal catalyst atoms. Silicided source and drain regions at each end of the silicon carbide seed layer provide catalyst metal atoms during formation of the CNT. The diameter of the SWT CNT is established by the width of the patterned seed layer. A conformally deposited gate dielectric layer and a transistor gate over the gate dielectric layer complete the CNT transistor. CNT transistors with multiple CNT bodies, split gates and varying diameters are also disclosed.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: November 30, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Ashesh Parikh, Andrew Marshall
  • Publication number: 20100297449
    Abstract: The present invention is a transparent conductive film characterized in that: a major component of the transparent conductive film is a single-walled carbon nanotube; the single-walled carbon nanotubes are present in a bundle state; and a rope-like shape, which is a state where the bundles are gathered together, can be confirmed by scanning electron microscope observation. The present invention is also a method for producing a liquid crystal alignment film using a transparent electrode substrate, with an electrode layer being the aforementioned transparent conductive film. According to the invention, a transparent electrode substrate with high wettability can be obtained, and further a method for producing an alignment film by which a uniform alignment film can be obtained without deteriorating an electrical characteristic is provided.
    Type: Application
    Filed: October 24, 2007
    Publication date: November 25, 2010
    Applicant: KURARAY CO., LTD.
    Inventors: Takahiro Kitano, Masayasu Ogushi
  • Publication number: 20100247777
    Abstract: Disclosed are methods for isolating and purifying single wall carbon nanotubes from contaminant matrix material, methods for forming arrays of substantially aligned nanotubes, and products and apparatus comprising a plurality of nanotube structures.
    Type: Application
    Filed: June 30, 2006
    Publication date: September 30, 2010
    Inventors: Pavel Nikolaev, Sivaram Arepalli, Mark S.F. Clarke, Daniel L. Feeback
  • Patent number: 7803262
    Abstract: Methods are provided for aligning carbon nanotubes and for making a composite material comprising aligned carbon nanotubes. The method for aligning carbon nanotubes comprises adsorbing magnetic nanoparticles to carbon nanotubes dispersed in a fluid medium to form a magnetic particle-carbon nanotube composite in the fluid medium; and exposing the composite to a magnetic field effective to align the nanotubes in the fluid medium. The method for making a composite material comprising aligned carbon nanotubes comprises (1) adsorbing magnetic nanoparticles to carbon nanotubes to form a magnetic particle-carbon nanotube composite; (2) dispersing the magnetic particle-carbon nanotube composite in a fluid matrix material to form a mixture; (3) exposing the mixture to a magnetic field effective to align the nanotubes in the mixture; and (4) solidifying the fluid matrix material to form a nanotube/matrix material composite comprising the aligned nanotubes which remain aligned in the absence of said magnetic field.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: September 28, 2010
    Assignee: Florida State University Research Foundation
    Inventors: Yousef Haik, Jhunu Chatterjee, Ching-Jen Chen
  • Patent number: 7799307
    Abstract: A method of growing single-walled carbon nanotubes. The method may include supplying at least one of an oxidant and an etchant into a vacuum chamber and supplying a source gas into the vacuum chamber to grow carbon nanotubes on a substrate in an oxidant or an etchant atmosphere. The carbon nanotubes may be grown in an H2O plasma atmosphere. The carbon nanotubes may be grown at a temperature less than 500° C.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: September 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Ju Bae, Yo-Sep Min, Wan-Jun Park
  • Patent number: 7794682
    Abstract: A method of extracting fullerenes from a carbon matrix in which they are produced. The method is applicable to both fullerenes that exhibit greater than 0.1 mg/ml solubility in toluene and to fullerenes that are essentially insoluble in toluene, i.e., those exhibiting less than or equal to 0.1 mg/ml solubility. The method disclosed herein extracts more of the soluble fullerenes from the carbon matrix than extraction conducted by solely contacting with solvent. A method is also provided for creating salts of the extracted fullerenes.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: September 14, 2010
    Assignee: TDA Research, Inc.
    Inventors: Michael D. Diener, James W. Raebiger, Robert D. Bolskar, John M. Alford
  • Patent number: 7785472
    Abstract: A method of separating, concentrating or purifying uniform carbon nanotubes with desired properties (diameter, chiral vector, etc) in a highly sensitive manner by the use of structure-sensitive properties peculiar to carbon nanotubes; and an apparatus therefor. There is provided a method of separating, concentrating, or purifying carbon nanotubes with the desired properties contained in a sample, comprising the steps of (a) irradiating a sample containing carbon nanotubes with light; and (b) selecting carbon nanotubes with desired properties. In a preferred embodiment, the light irradiation of the step (a) can be carried out in the presence of a metal so as to cause specified carbon nanotubes to selectively induce a photocatalytic reaction, resulting in metal deposition. Further, in a preferred embodiment, a given magnetic filed can be applied in the steps (b) so as to attain accumulation or concentration or carbon nanotubes with metal deposited.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: August 31, 2010
    Assignee: Japan Science and Technology Agency
    Inventor: Kei Murakoshi
  • Publication number: 20100189626
    Abstract: Provided is a method of electrophoresis of carbon nanotube for separating them into metallic carbon nanotubes and semiconducting carbon nanotubes, and the method comprises a step of electrifying a carbon nanotube sealed gel in which carbon nanotubes are dispersed in a gel. According to the separation method, metallic CNT and semiconducting CNT may be efficiently and heavily separated and purified from each other in CNT containing both the two within a short period of time and in a simplified manner by the use of inexpensive facilities and according to a simple process, and the method can be readily scaled up, in which CNT can be separated industrially extremely advantageously.
    Type: Application
    Filed: May 21, 2008
    Publication date: July 29, 2010
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE
    Inventors: Takeshi Tanaka, Hiromichi Kataura, Hehua Jin, Yasumitsu Miyata
  • Publication number: 20100170418
    Abstract: Separation of carbon nanotubes or fullerenes according to diameter through non-covalent pi-pi interaction with molecular clips is provided. Molecular clips are prepared by Diels-Alder reaction of polyacenes with a variety of dienophiles. The pi-pi complexes of carbon nanotrubes with molecular clips are also used for selective placement of carbon nanotubes and fullerenes on substrates.
    Type: Application
    Filed: July 21, 2006
    Publication date: July 8, 2010
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Cherie R. Kagan, Rudolf Tromp
  • Publication number: 20100166624
    Abstract: A method of separating at least one carbon nanotube having a desired diameter and/or chirality from a mixture of carbon nanotubes having different diameters and/or chiralities is provided. A calixarene of formula (I): wherein n?4; X is PO3H2, Ra—PO3H, SO3H, or Ra—SO3H; Y is Rb, OH, or ORb; and Ra and Rb are independently selected from the group consisting of optionally substituted alkyl, optionally substituted aryl, optionally substituted arylene alkyl and optionally substituted alkylene aryl is combined with the mixture of carbon nanotubes in an aqueous solvent to produce an aqueous supernatant containing the carbon nanotube(s) having the desired diameter and/or chirality. The aqueous supernatant containing the carbon nanotube(s) is then separated from a residue comprising the remaining carbon nanotubes of the mixture.
    Type: Application
    Filed: October 30, 2009
    Publication date: July 1, 2010
    Applicant: THE UNIVERSITY OF WESTERN AUSTRALIA
    Inventors: Colin Llewellyn RASTON, Lee John Hubble
  • Publication number: 20100166637
    Abstract: The subject invention provides a two-phase liquid-liquid extraction process that enables sorting and separation of single-walled carbon nanotubes based on (n, m) type and/or diameter. The two-phase liquid extraction method of the invention is based upon the selective reaction of certain types of nanotubes with electron withdrawing functional groups as well as the interaction between a phase transfer agent and ionic moieties on the functionalized nanotubes when combined in a two-phase liquid solution. Preferably, the subject invention enables efficient, bulk separation of metallic/semi-metallic nanotubes from semi-conducting nanotubes. More preferably, the subject invention enables efficient, bulk separation of specific (n, m) types of nanotubes.
    Type: Application
    Filed: September 15, 2006
    Publication date: July 1, 2010
    Inventor: Kirk Jeremy Ziegler
  • Publication number: 20100143234
    Abstract: A method of preparing carbon nanotubes (CNT), a method of purifying carbon nanotubes, carbon nanotubes, and an element using said carbon nanotubes are provided. The method includes preparing carbon nanotubes by arc-discharge and employs a coordination chemistry process to remove a catalyst and/or optional promoter used in arc-discharge.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 10, 2010
    Applicant: SONY CORPORATION
    Inventors: Hisashi Kajiura, Yongming Li, Hongliang Zhang, Yu Wang, Yunqi Liu, Dacheng Wei, Liping Huang
  • Patent number: 7727505
    Abstract: A method for separating carbon nanotubes comprises: providing a mixture of carbon nanotubes; introducing an organic molecule having an end group capable of being chelated by a metal ion to the mixture of carbon nanotubes to covalently bond the organic molecule to at least one of the mixture of carbon nanotubes; and introducing a metal salt to the mixture of carbon nanotubes to chelate the end group of the organic molecule with the metal ion of the metal salt; and centrifuging the mixture of carbon nanotubes to cause the separation of the carbon nanotubes based on a density differential of the carbon nanotubes.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ali Afazali-Ardakani, James B. Hannon, Cherie R. Kagan, George S. Tulevski
  • Publication number: 20100119436
    Abstract: A purification method for a carbon material containing carbon nanotubes is provided, which satisfies the following requirements: The method should prevent carbon nanotubes from being damaged, broken or flocculated; the method should be capable of removing the catalyst metal and carbon components other than the carbon nanotubes; and the method should be applicable to not only multi-walled carbon nanotubes but also single-walled carbon nanotubes which will undergo significant structural changes when heated to 1400° C. or higher temperatures. The method is characterized by including a carbon material preparation process for preparing a carbon material containing carbon nanotubes by an arc discharge method, using an anode made of a material containing at least carbon and a catalyst metal; and a halogen treatment process for bringing the carbon material into contact with a gas containing a halogen and/or halogen compound.
    Type: Application
    Filed: March 7, 2008
    Publication date: May 13, 2010
    Applicant: TOYO TANSO CO., LTD.
    Inventors: Yuji Takimoto, Naoto Ohta, Tetsuro Tojo
  • Publication number: 20100117032
    Abstract: This invention relates generally to organized assemblies of carbon and non-carbon compounds and methods of making such organized structures. In preferred embodiments, the organized structures of the instant invention take the form of nanorods or their aggregate forms. More preferably, a nanorod is made up of a carbon nanotube filled, coated, or both filled and coated by a non-carbon material. This invention is further drawn to the separation of single-wall carbon nanotubes. In particular, it relates to the separation of semiconducting single-wall carbon nanotubes from conducting (or metallic) single-wall carbon nanotubes. It also relates to the separation of single-wall carbon nanotubes according to their chirality and/or diameter.
    Type: Application
    Filed: April 27, 2007
    Publication date: May 13, 2010
    Inventors: Leonid Grigorian, Steven G. Colbern, Alex E. Moser, Robert L. Gump, Daniel A. Niebauer, Sean Imtiaz Brahim
  • Publication number: 20100108580
    Abstract: As an elegant solution for minimizing false positives returned by a sensor tuned to an analyte molecule, filters constructed of carbon nanotubes are positioned relative to the sensor to limit the sensor to being exposed to molecules within a defined range of sizes, with too-big molecules being excluded from reaching the sensor by one filter, and too-small molecules being pumped out through another, finer filter before the sensor is operated.
    Type: Application
    Filed: March 13, 2009
    Publication date: May 6, 2010
    Inventor: Stephen J. Lukasik
  • Publication number: 20100111814
    Abstract: A mixture of carbon nanotubes is separated into fractions that are enriched with a desired chirality by exposing a solution or suspension of the carbon nanotubes to a separation medium. A portion of the mixture forms complexes with, and becomes attached to, the separation medium. Exposure to other reagents results in dissociation of the complexes and release of the nanotubes from the separation medium.
    Type: Application
    Filed: December 14, 2006
    Publication date: May 6, 2010
    Inventors: Stephen K. Doorn, Michael J. O'Connell, Crystal G. Densmore, Hsing-lin Wang
  • Publication number: 20100105880
    Abstract: Separating different types of nanotubes from one another includes providing a sample of heterogeneous nanotubes comprising a first and second type of carbon nanotube; providing a first type of molecule; introducing the first type of molecule to the sample; binding the first type of molecule to the first type of carbon nanotube; and separating the first type of carbon nanotube from the sample. A second type of molecule may be introduced to the sample followed by binding the second type of molecule to the second type of carbon nanotube; and separating the second type of carbon nanotube from the sample. The sample may comprise a third type of carbon nanotube. A third type of molecule may be introduced to the sample followed by binding the third type of molecule to the third type of carbon nanotube; and separating the third type of carbon nanotube from the sample.
    Type: Application
    Filed: September 30, 2009
    Publication date: April 29, 2010
    Inventor: LETHA J. SOOTER
  • Publication number: 20100101983
    Abstract: In accordance with the invention there are systems and methods of separating a mixture of carbon nanotubes comprising dispersing carbon nanotubes into a fluid to form a dispersion of individually-suspended carbon nanotubes and focusing the dispersion of individually-suspended carbon nanotubes into a single file stream of carbon nanotubes. The methods can also include characterizing the single file stream of carbon nanotubes and sorting the carbon nanotubes based on their properties.
    Type: Application
    Filed: February 14, 2008
    Publication date: April 29, 2010
    Inventors: Jason Edward Butler, Kirk Jeremy Ziegler
  • Publication number: 20100086470
    Abstract: A novel microwave-assisted process is described for the rapid removal of catalytic metal and non-desirable carbon impurities in fullerene, single wall, and multiple wall carbon nanotube preparations. The purification process is carried out at various programmed pressures, power levels and reaction times in a suspension of the nanocarbon moieties in the presence of strong acids (for example, a mixture of sulfuric acid and nitric acid), in weak acids (for example, acetic acid) and in the presence of chelating agents (for example, EDTA—ethylenediaminetetraacetic acid). In one embodiment, high metal removal efficiency of 70 to 90% is observed.
    Type: Application
    Filed: November 16, 2006
    Publication date: April 8, 2010
    Inventors: Somenath Mitra, Zafar Iqbal
  • Publication number: 20100080748
    Abstract: Provided is a continuous method and apparatus of purifying carbon nanotubes. The continuous method and apparatus of purifying carbon nanotubes is characterized in a first purifying step for injecting a carbon nanotube liquid mixture containing an oxidizer into a purifying reactor under a sub-critical water or supercritical water condition at a pressure of 50 to 400 atm and a temperature of 100 to 600° C. to obtain a purified product, thereby removing amorphous carbon and producing the carbon nanotube product.
    Type: Application
    Filed: September 29, 2009
    Publication date: April 1, 2010
    Inventors: Joo Hee Han, Jin-Seo Lee, Seung-Hoe Do, Seong Cheol Hong
  • Patent number: 7687308
    Abstract: A method of forming a single wall thickness (SWT) carbon nanotube (CNT) transistor with a controlled diameter and chirality is disclosed. A photolithographically defined single crystal silicon seed layer is converted to a single crystal silicon carbide seed layer. A single layer of graphene is formed on the top surface of the silicon carbide. The SWT CNT transistor body is grown from the graphene layer in the presence of carbon containing gases and metal catalyst atoms. Silicided source and drain regions at each end of the silicon carbide seed layer provide catalyst metal atoms during formation of the CNT. The diameter of the SWT CNT is established by the width of the patterned seed layer. A conformally deposited gate dielectric layer and a transistor gate over the gate dielectric layer complete the CNT transistor. CNT transistors with multiple CNT bodies, split gates and varying diameters are also disclosed.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: March 30, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Ashesh Parikh, Andrew Marshall
  • Publication number: 20100074832
    Abstract: Methods of purifying samples are provided that are capable of removing carbonaceous and noncarbonaceous impurities from a sample containing a carbon material having a selected structure. Purification methods are provided for removing residual metal catalyst particles enclosed in multilayer carbonaceous impurities in samples generate by catalytic synthesis methods. Purification methods are provided wherein carbonaceous impurities in a sample are at least partially exfoliated, thereby facilitating subsequent removal of carbonaceous and noncarbonaceous impurities from the sample. Methods of purifying carbon nanotube-containing samples are provided wherein an intercalant is added to the sample and subsequently reacted with an exfoliation initiator to achieve exfoliation of carbonaceous impurities.
    Type: Application
    Filed: May 5, 2009
    Publication date: March 25, 2010
    Applicants: California Institute of Technology, Centre National De La Recherche Scientifique
    Inventors: Anne Dailly, Channing Ahn, Rachid Yazami, Brent T. Fultz
  • Publication number: 20100072458
    Abstract: The present teachings provide methods for sorting nanotubes according to their wall number, and optionally further in terms of their diameter, electronic type, and/or chirality. Also provided are highly enriched nanotube populations provided thereby and articles of manufacture including such populations.
    Type: Application
    Filed: August 5, 2009
    Publication date: March 25, 2010
    Inventors: Alexander A. Green, Mark C. Hersam
  • Publication number: 20100051880
    Abstract: Certain applicator liquids and method of making the applicator liquids are described. The applicator liquids can be used to form nanotube films or fabrics of controlled properties. An applicator liquid for preparation of a nanotube film or fabric includes a controlled concentration of nanotubes dispersed in a liquid medium containing water. The controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity.
    Type: Application
    Filed: November 4, 2009
    Publication date: March 4, 2010
    Inventors: Eliodor G. Ghenciu, Tzong-Ru T. Han, Ramesh SIVARAJAN, Thomas Rueckes, Rahul Sen, Brent M. Segal, Jonathan W. Ward
  • Patent number: 7670583
    Abstract: The present invention relates to processes for the purification of single-wall carbon nanotubes (SWNTs). Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the side of the single-wall carbon nanotubes. The present purification processes remove the extraneous carbon as well as metal-containing residual catalyst particles.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: March 2, 2010
    Assignee: William Marsh Rice University
    Inventors: Robert H. Hauge, Ya-Qiong Xu, Haiqing Peng, Richard E. Smalley, Irene Morin Marek, legal representative