Including Coating Patents (Class 977/857)
-
Patent number: 8999458Abstract: A method and apparatus for fabricating or altering a microstructure use means for heating to facilitate a local chemical reaction that forms or alters the submicrostructure.Type: GrantFiled: April 16, 2012Date of Patent: April 7, 2015Assignee: International Business Machines CorporationInventors: Supratik Guha, Hendrik F. Hamann, Herschel M. Marchman, Robert J. Von Gutfeld
-
Patent number: 8864045Abstract: Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.Type: GrantFiled: November 18, 2011Date of Patent: October 21, 2014Assignee: STC.UNMInventors: Xingmao Jiang, C. Jeffrey Brinker
-
Patent number: 8865268Abstract: A method and apparatus, the method including: forming a recess in a graphene layer wherein the recess creates a boundary between a first portion of the graphene layer and a second portion of the graphene layer; depositing electrically insulating material within the recess; and depositing an electrically conductive material over the insulating material.Type: GrantFiled: April 28, 2009Date of Patent: October 21, 2014Assignee: Nokia CorporationInventors: Samiul Haque, Reijo K. Lehtiniemi, Asta M. Karkkainen, Lorenz Lechner, Pertti Hakonen
-
Patent number: 8809678Abstract: CIGS absorber layers fabricated using coated semiconducting nanoparticles and/or quantum dots are disclosed. Core nanoparticles and/or quantum dots containing one or more elements from group 13 and/or IIIA and/or VIA may be coated with one or more layers containing elements group IB, IIIA or VIA. Using nanoparticles with a defined surface area, a layer thickness could be tuned to give the proper stoichiometric ratio, and/or crystal phase, and/or size, and/or shape. The coated nanoparticles could then be placed in a dispersant for use as an ink, paste, or paint. By appropriate coating of the core nanoparticles, the resulting coated nanoparticles can have the desired elements intermixed within the size scale of the nanoparticle, while the phase can be controlled by tuning the stoichiometry, and the stoichiometry of the coated nanoparticle may be tuned by controlling the thickness of the coating(s).Type: GrantFiled: May 7, 2012Date of Patent: August 19, 2014Assignee: aeris CAPITAL Sustainable IP Ltd.Inventors: Brian M. Sager, Dong Yu, Matthew R. Robinson
-
Patent number: 8790863Abstract: In a method for imaging a solid state substrate, a vapor is condensed to an amorphous solid water condensate layer on a surface of a solid state substrate. Then an image of at least a portion of the substrate surface is produced by scanning an electron beam along the substrate surface through the water condensate layer. The water condensate layer integrity is maintained during electron beam scanning to prevent electron-beam contamination from reaching the substrate during electron beam scanning. Then one or more regions of the layer can be locally removed by directing an electron beam at the regions. A material layer can be deposited on top of the water condensate layer and any substrate surface exposed at the one or more regions, and the water condensate layer and regions of the material layer on top of the layer can be removed, leaving a patterned material layer on the substrate.Type: GrantFiled: October 26, 2011Date of Patent: July 29, 2014Assignee: President and Fellows of Harvard CollegeInventors: Daniel Branton, Anpan Han, Jene A. Golovchenko
-
Patent number: 8604559Abstract: A semiconductor device includes a bonding surface, a semiconducting nanostructure including one of a nanowire and a nanocrystal, which is formed on the bonding surface, and a source electrode and a drain electrode which are formed on the nanostructure such that the nanostructure is electrically connected to the source and drain electrodes.Type: GrantFiled: March 31, 2011Date of Patent: December 10, 2013Assignee: International Business Machines CorporationInventors: Ali Afzali-Ardakani, Supratik Guha, Cherie R. Kagan, George S. Tulevski, Emanuel Tutuc
-
Patent number: 8518829Abstract: A method of forming a nanopore array includes patterning a front layer of a substrate to form front trenches, the substrate including a buried layer disposed between the front layer and a back layer; depositing a membrane layer over the patterned front layer and in the front trenches; patterning the back layer and the buried layer to form back trenches, the back trenches being aligned with the front trenches; forming a plurality of nanopores through the membrane layer; depositing a sacrificial material in the front trenches and the back trenches; depositing front and back insulating layers over the sacrificial material; and heating the sacrificial material to a decomposition temperature of the sacrificial material to remove the sacrificial material and form pairs of front and back channels, wherein the front channel of each channel pair is connected to the back channel of its respective channel pair by an individual nanopore.Type: GrantFiled: April 22, 2011Date of Patent: August 27, 2013Assignee: International Business Machines CorporationInventors: Bing Dang, Hongbo Peng
-
Patent number: 8426008Abstract: A medical device or analytical device comprising a fluid-impervious surface comprising a base surface, at least one distinct region of the base surface covered by a mixed monolayer film, the mixed monolayer film comprising a species having a functional group M1 and a species having a functional group M2 where M1 and M2 have different surface energies, the mixed monolayer forming a surface energy gradient wherein at least one of the species used to form the monolayer on the surface comprises a biopolymer-resistant domain.Type: GrantFiled: December 15, 2011Date of Patent: April 23, 2013Inventor: Brian David Babcock
-
Patent number: 8384069Abstract: A semiconductor structure includes a support and at least one block provided on the support. The block includes a stack including alternating layers based on a first semiconductor material and layers based on a second semiconductor material different from the first material, the layers presenting greater dimensions than layers such that the stack has a lateral tooth profile and a plurality of spacers filling the spaces formed by the tooth profile, the spacers being made of a third material different from the first material such that each of the lateral faces of the block presents alternating lateral bands based on the first material and alternating lateral bands based on the third material. At least one of the lateral faces of the block is partially coated with a material promoting the growth of nanotubes or nanowires, the catalyst material exclusively coating the lateral bands based on the first material or exclusively coating the lateral bands based on the third material.Type: GrantFiled: May 18, 2010Date of Patent: February 26, 2013Assignee: Commissariat à l'Énergie Atomique et aux Énergies AlternativesInventors: Carole Pernel, Cécilia Dupre
-
Patent number: 8273257Abstract: In a method for processing a nanotube, a vapor is condensed to a solid condensate layer on a surface of the nanotube and then at least one selected region of the condensate layer is locally removed by directing a beam of energy at the selected region. The nanotube can be processed with at least a portion of the solid condensate layer maintained on the nanotube surface and thereafter the solid condensate layer removed. Nanotube processing can include, e.g., depositing a material layer on an exposed nanotube surface region where the condensate layer was removed. After forming a solid condensate layer, an electron beam can be directed at a selected region along a nanotube length corresponding to a location for cutting the nanotube, to locally remove the condensate layer at the region, and an ion beam can be directed at the selected region to cut the nanotube at the selected region.Type: GrantFiled: March 24, 2009Date of Patent: September 25, 2012Assignee: President and Fellows of Harvard CollegeInventors: Jene A Golovchenko, Gavin M King, Gregor M Schurmann, Daniel Branton
-
Patent number: 8268725Abstract: A modified coffee-stain method for producing self-organized line structures and other very fine features that involves disposing a solution puddle on a target substrate, and then controlling the peripheral boundary shape of the puddle using a control structure that contacts the puddle's upper surface. The solution is made up of a fine particle solute dispersed in a liquid solvent wets and becomes pinned to both the target substrate and the control structure. The solvent is then caused to evaporate at a predetermined rate such that a portion of the solute forms a self-organized “coffee-stain” line structure on the target substrate surface that is contacted by the peripheral puddle boundary. The target structure is optionally periodically raised to generate parallel lines that are subsequently processed to form, e.g., TFTs for large-area electronic devices.Type: GrantFiled: October 7, 2010Date of Patent: September 18, 2012Assignee: Palo Alto Research Center IncorporatedInventors: Sanjiv Sambandan, Robert A. Street, Ana Claudia Arias
-
Patent number: 8227033Abstract: A method for applying membrane lipids to a substrate includes providing a substrate and an ink reservoir having an ink including a membrane lipid. The tip of a scanning probe microscope is dipped into the ink so as to dispose the membrane lipid on the tip. The tip of the scanning probe microscope is brought into contact with a surface of the substrate. The tip is moved over regions of the surface so that the membrane lipid migrates from the tip of the scanning probe microscope onto the surface of the substrate in the regions and the membrane lipid organizes itself in the regions in a form of a single lipid layer or in a form of one or a plurality of mutually superposed lipid bilayers. The tip is removed from the surface of the substrate.Type: GrantFiled: July 18, 2007Date of Patent: July 24, 2012Assignee: Forschungszentrum Karlsruhe GmbHInventors: Steven Lenhert, Harald Fuchs
-
Patent number: 8193442Abstract: CIGS absorber layers fabricated using coated semiconducting nanoparticles and/or quantum dots are disclosed. Core nanoparticles and/or quantum dots containing one or more elements from group IB and/or IIIA and/or VIA may be coated with one or more layers containing elements group IB, IIIA or VIA. Using nanoparticles with a defined surface area, a layer thickness could be tuned to give the proper stoichiometric ratio, and/or crystal phase, and/or size, and/or shape. The coated nanoparticles could then be placed in a dispersant for use as an ink, paste, or paint. By appropriate coating of the core nanoparticles, the resulting coated nanoparticles can have the desired elements intermixed within the size scale of the nanoparticle, while the phase can be controlled by tuning the stochiometry, and the stoichiometry of the coated nanoparticle may be tuned by controlling the thickness of the coating(s).Type: GrantFiled: December 11, 2007Date of Patent: June 5, 2012Assignee: Nanosolar, Inc.Inventors: Brian M. Sager, Dong Yu, Matthew R. Robinson
-
Patent number: 8192795Abstract: Lithographic and nanolithographic methods that involve patterning a first compound on a substrate surface, exposing non-patterned areas of the substrate surface to a second compound and removing the first compound while leaving the second compound intact. The resulting hole patterns can be used as templates for either chemical etching of the patterned area of the substrate or metal deposition on the patterned area of the substrate.Type: GrantFiled: June 28, 2007Date of Patent: June 5, 2012Assignee: Northwestern UniversityInventors: Chad A. Mirkin, Khalid Salaita
-
Patent number: 8187673Abstract: The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN). DPN utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substrate as “ink.” Capillary transport of molecules from the SPM tip to the solid substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN, including submicrometer combinatorial arrays, and kits, devices and software for performing DPN. The invention further provides a method of performing AFM imaging in air.Type: GrantFiled: October 31, 2007Date of Patent: May 29, 2012Assignee: Northwestern UniversityInventors: Chad A. Mirkin, Richard Piner, Seunghun Hong
-
Patent number: 8101263Abstract: A cooling system comprising a plurality of coolant channels comprising a fluid-impervious surface comprising a base surface, at least one distinct region of the base surface covered by a mixed monolayer, the mixed monolayer comprising a species having a functional group M1 and a species having a functional group M2 where M1 and M2 have different surface energies, the mixed monolayer forming a surface energy gradient within the region and wherein any portions of the surface that border the at least one distinct region have substantially equal surface energies.Type: GrantFiled: June 30, 2010Date of Patent: January 24, 2012Inventor: Brian David Babcock
-
Patent number: 8029851Abstract: Techniques for making nanowires with a desired diameter are provided. The nanowires can be grown from catalytic nanoparticles, wherein the nanowires can have substantially same diameter as the catalytic nanoparticles. Since the size or the diameter of the catalytic nanoparticles can be controlled in production of the nanoparticles, the diameter of the nanowires can be subsequently controlled as well. The catalytic nanoparticles are melted and provided with a gaseous precursor of the nanowires. When supersaturation of the catalytic nanoparticles with the gaseous precursor is reached, the gaseous precursor starts to solidify and form nanowires. The nanowires are separate from each other and not bind with each other to form a plurality of nanowires having the substantially uniform diameter.Type: GrantFiled: August 29, 2008Date of Patent: October 4, 2011Assignee: Korea University Research and Business FoundationInventor: Kwangyeol Lee
-
Patent number: 7993538Abstract: The invention provides a method for forming a patterned material layer on a structure, by condensing a vapor to a solid condensate layer on a surface of the structure and then localized removal of selected regions of the condensate layer by directing a beam of energy at the selected regions. The structure can then be processed, with at least a portion of the patterned solid condensate layer on the structure surface, and then the solid condensate layer removed. Further there can be stimulated localized reaction between the solid condensate layer and the structure by directing a beam of energy at at least one selected region of the condensate layer.Type: GrantFiled: October 10, 2008Date of Patent: August 9, 2011Assignee: President and Fellows of Harvard CollegeInventors: Jene A. Golovchenko, Gavin M. King, Gregor M. Schurmann, Daniel Branton
-
Publication number: 20110081526Abstract: The present invention includes a method of fabricating organic/inorganic composite nanostructures on a substrate comprising depositing a solution having a block copolymer and an inorganic precursor on the substrate using dip pen nanolithography. The nanostructures comprises arrays of lines and/or dots having widths/diameters less than 1 micron. The present invention also includes a device comprising an organic/inorganic composite nanoscale region chemically bonded to a substrate, wherein the nanoscale region, wherein the nanoscale region has a nanometer scale dimension other than height.Type: ApplicationFiled: October 5, 2010Publication date: April 7, 2011Inventors: Chad A. Mirkin, Vinayak P. Dravid, Ming Su, Xiaogang Liu
-
Patent number: 7887885Abstract: The invention provides methods of nanolithography and products therefor and produced thereby. In particular, the invention provides a nanolithographic method referred to as high force nanografting (HFN). HFN utilizes a tip (e.g., a scanning probe microscope (SPM) tip such as an atomic force microscope (AFM) tip) to pattern a substrate passivated with a resist. In the presence of a patterning compound, the tip is used to apply a high force to the substrate to remove molecules of the resist from the substrate, whereupon molecules of the patterning compound are able to attach to the substrate the form the desired pattern.Type: GrantFiled: October 19, 2001Date of Patent: February 15, 2011Assignee: Northwestern UniversityInventors: Chad A. Mirkin, Peter V. Schwartz, James J. Storhoff, So-Jung Park
-
Patent number: 7888271Abstract: A method for making silicon nano-structure, the method includes the following steps. Firstly, providing a growing substrate and a growing device, the growing device comprising a heating apparatus and a reacting room. Secondly, placing the growing substrate and a quantity of catalyst separately into the reacting room. Thirdly, introducing a silicon-containing gas and hydrogen gas into the reacting room. Lastly, heating the reacting room to a temperature of 500˜1100° C.Type: GrantFiled: November 6, 2008Date of Patent: February 15, 2011Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.Inventors: Hai-Lin Sun, Kai-Li Jiang, Qun-Qing Li, Shou-Shan Fan
-
Patent number: 7862858Abstract: A resist medium in which features are lithographically produced by scanning a surface of the medium with an AFM probe positioned in contact therewith. The resist medium comprises a substrate; and a polymer resist layer within which features are produced by mechanical action of the probe. The polymer contains thermally reversible crosslinkages. Also disclosed are methods that generally includes scanning a surface of the polymer resist layer with an AFM probe positioned in contact with the resist layer, wherein heating the probe and a squashing-type mechanical action of the probe produces features in the layer by thermally reversing the crosslinkages.Type: GrantFiled: December 17, 2008Date of Patent: January 4, 2011Assignee: International Business Machines CorporationInventors: Michel Despont, Urs T. Duerig, Jane E. Frommer, Bernd W. Gotsmann, James L. Hedrick, Craig Jon Hawker, Robert D. Miller
-
Patent number: 7863111Abstract: Provided are a thin film transistor for display devices and a manufacturing method of the thin film transistor. The thin film transistor for display devices includes: a flexible substrate; a gate electrode layer formed on the flexible substrate; a first insulating layer formed on the flexible substrate and the gate electrode; a source and a drain formed on the first insulating layer; an active layer formed on the first insulating layer between the source and the drain; a second insulating layer formed on the first insulating layer, the source, the drain, and the active layer; and a drain electrode that opens the second insulating layer to be connected to the drain and is formed of a CNT dispersed conductive polymer.Type: GrantFiled: September 10, 2007Date of Patent: January 4, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Jun-seong Kim, Euk-che Hwang, Ki-deok Bae, Chang-seung Lee, Hyeon-Jin Shin
-
Patent number: 7842522Abstract: Composition of carbon nanotubes (CNTs) are produced into inks that are dispensable via ink jet or other deposition processes. The CNT ink is dispensed into wells and allowed to dry so as to formed a cathode structure. It is important to note that after the CNT ink is deposited to form a cathode structure, no further post-deposition processes are performed, such as the removal of sacrificial layers, which could damage the CNT ink.Type: GrantFiled: September 9, 2004Date of Patent: November 30, 2010Assignee: Applied Nanotech Holdings, Inc.Inventors: Yunjun Li, Richard Lee Fink, Mohshi Yang, Zvi Yaniv
-
Patent number: 7842344Abstract: The present invention relates to the use of direct-write lithographic printing of proteins and peptides onto surfaces. In particular, the present invention relates to methods for creating protein and peptide arrays and compositions derived therefrom. Nanoscopic tips can be used to deposit the peptide or protein onto the surface to produce a pattern. The pattern can be dots or lines having dot diameter and line width of less than 1,000 nm. The tips and the substrate surfaces can be adapted for the peptide and protein lithography.Type: GrantFiled: March 1, 2004Date of Patent: November 30, 2010Assignee: Northwestern UniversityInventors: Chad A. Mirkin, Jung-Hyurk Lim, David S. Ginger, Jwa-Min Nam, Ki-Bum Lee, Linette Demers, Albena Ivanisevic
-
Patent number: 7811635Abstract: The present invention includes a method of fabricating organic/inorganic composite nanostructures on a substrate comprising depositing a solution having a block copolymer and an inorganic precursor on the substrate using dip pen nanolithography. The nanostructures comprises arrays of lines and/or dots having widths/diameters less than 1 micron. The present invention also includes a device comprising an organic/inorganic composite nanoscale region chemically bonded to a substrate, wherein the nanoscale region, wherein the nanoscale region has a nanometer scale dimension other than height.Type: GrantFiled: August 29, 2007Date of Patent: October 12, 2010Assignee: Northwestern UniversityInventors: Chad A. Mirkin, Vinayak P. Dravid, Ming Su, Xiaogang Liu
-
Patent number: 7790265Abstract: A surface energy gradient on a fluid-impervious surface and method of its creation comprising the steps of a) Exposing a base surface having a proximal and a distal portion to a first solution comprising at least one molecule of the formula X-J-M1 wherein X and M1 represent separate functional groups and J represents a spacer moiety that, together, are able to promote formation from solution of a self-assembled monolayer for sufficient time to form a monolayer surface having a uniform surface energy on the base surface. b) Removing a portion of the monolayer of (a) such that a portion of the base surface is again fully or partially exposed. (c) Exposing the portion of the base surface from (b) to at least one other molecule including a functional group having a different surface energy from that of the functional group removed in(b) such that a surface energy gradient from a proximal location to a distal location is formed.Type: GrantFiled: November 1, 2002Date of Patent: September 7, 2010Inventor: Brian Babcock
-
Patent number: 7744963Abstract: In one aspect, a method of nanolithography is provided, the method comprising providing a substrate; providing a scanning probe microscope tip; coating the tip with a deposition compound; and subjecting said coated tip to a driving force to deliver said deposition compound to said substrate so as to produce a desired pattern. Another aspect of the invention provides a tip for use in nanolithography having an internal cavity and an aperture restricting movement of a deposition compound from the tip to the substrate. The rate and extent of movement of the deposition compound through the aperture is controlled by a driving force.Type: GrantFiled: October 31, 2007Date of Patent: June 29, 2010Assignee: Northwestern UniversityInventors: Chad A. Mirkin, Seunghun Hong, Vinayak P. Dravid
-
Patent number: 7691541Abstract: Photomask repair and fabrication with use of direct-write nanolithography, including use of scanning probe microscopic tips (e.g., atomic force microscope tips, etc.) for deposition of ink materials including sol-gel inks. Additive methods can be combined with subtractive methods. Holes can be filled with nanostructures. Heights of the nanostructures filling the holes can be controlled without losing control of the lateral dimensions of the nanostructures. Phase shifters on phase shifting masks (PSMs) are additively repaired with selectively deposited sol-gel material that is converted to solid oxide, which has optical transparency and index of refraction adapted for the phase shifters repaired.Type: GrantFiled: October 21, 2003Date of Patent: April 6, 2010Assignee: NanoInk, Inc.Inventors: Percy Van Crocker, Sylvain Cruchon-Dupeyrat, Linette Demers, Robert Elghanian, Sandeep Disawal, Nabil Amro, Hua Zhang
-
Patent number: 7651944Abstract: Methods of positioning and orienting nanostructures, and particularly nanowires, on surfaces for subsequent use or integration. The methods utilize mask based processes alone or in combination with flow based alignment of the nanostructures to provide oriented and positioned nanostructures on surfaces. Also provided are populations of positioned and/or oriented nanostructures, devices that include populations of positioned and/or oriented nanostructures, systems for positioning and/or orienting nanostructures, and related devices, systems and methods.Type: GrantFiled: August 5, 2008Date of Patent: January 26, 2010Assignee: Nanosys, Inc.Inventors: Xiangfeng Duan, R. Hugh Daniels, Chunming Niu, Vijendra Sahi, James M. Hamilton, Linda T. Romano
-
Patent number: 7638431Abstract: A metal is deposited onto a surface electrochemically using a deposition solution including a metal salt. In making a composite nanostructure, the solution further includes an enhancer that promotes electrochemical deposition of the metal on the nanostructure. In a method of forming catalyzing nanoparticles, the metal preferentially deposits on a selected location of a surface that is exposed through a mask layer instead of on unexposed surfaces. A composite nanostructure apparatus includes an array of nanowires and the metal deposited on at least some nanowire surfaces. Some of the nanowires are heterogeneous, branched and include different adjacent axial segments with controlled axial lengths. In some deposition solutions, the enhancer one or both of controls oxide formation on the surface and causes metal nanocrystal formation. The deposition solution further includes a solvent that carries the metal salt and the enhancer.Type: GrantFiled: September 29, 2006Date of Patent: December 29, 2009Assignee: Hewlett-Packard Development Company, L.P.Inventors: Amir A. Yasseri, Theodore I. Kamins, Shashank Sharma
-
Patent number: 7553776Abstract: The present invention provides a method for preparing a silicon substrate and a silicon substrate having a silicon surface comprising a pattern of covalently bound monolayers. Each of the monolayers comprises an alkyne, wherein at least a portion of each monolayer is no more than about 5 molecules of the alkyne wide.Type: GrantFiled: August 4, 2006Date of Patent: June 30, 2009Assignee: Purdue Research FoundationInventors: Jillian M. Buriak, Patrick T. Hurley
-
Patent number: 7544523Abstract: A method of batch fabrication using established photolithographic techniques allowing nanoparticles or nanodevices to be fabricated and mounted into a macroscopic device in a repeatable, reliable manner suitable for large-scale mass production. Nanoparticles can be grown on macroscopic “modules” which can be easily manipulated and shaped to fit standard mounts in various devices.Type: GrantFiled: February 28, 2006Date of Patent: June 9, 2009Assignee: FEI CompanyInventors: Gregory Schwind, Gerald Magera, Lawrence Scipioni
-
Patent number: 7541062Abstract: The present invention describes an apparatus for nanolithography and a process for thermally controlling the deposition of a solid organic “ink” from the tip of an atomic force microscope to a substrate. The invention may be used to turn deposition of the ink to the substrate on or off by either raising its temperature above or lowing its temperature below the ink's melting temperature. This process may be useful as it allows ink deposition to be turned on and off and the deposition rate to change without the tip breaking contact with the substrate. The same tip can then be used for imaging purposes without fear of contamination. This invention can allow ink to be deposited in a vacuum enclosure, and can also allow for greater spatial resolution as the inks used have lower surface mobilities once cooled than those used in other nanolithography methods.Type: GrantFiled: September 29, 2004Date of Patent: June 2, 2009Assignee: The United States of America as represented by the Secretary of the NavyInventors: Paul E. Sheehan, Lloyd J. Whitman, William P. King
-
Patent number: 7524431Abstract: The invention provides a method for forming a patterned material layer on a structure, by condensing a vapor to a solid condensate layer on a surface of the structure and then localized removal of selected regions of the condensate layer by directing a beam of energy at the selected regions, exposing the structure at the selected regions. A material layer is then deposited on top of the solid condensate layer and the exposed structure at the selected regions. Then the solid condensate layer and regions of the material layer that were deposited on the solid condensate layer are removed, leaving a patterned material layer on the structure.Type: GrantFiled: December 9, 2004Date of Patent: April 28, 2009Assignee: President and Fellows of Harvard CollegeInventors: Daniel Branton, Jene A. Golovchenko, Gavin M. King, Warren J. MoberlyChan, Gregor M. Schürmann
-
Patent number: 7524534Abstract: The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN), which utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substrate as “ink.” Capillary transport of molecules from the SPM tip to the solid-state substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN, including submicrometer combinatorial arrays, and kits, devices and software for performing DPN. The invention further provides a method of performing AFM imaging in air.Type: GrantFiled: September 10, 2004Date of Patent: April 28, 2009Assignee: Northwestern UniversityInventors: Chad A. Mirkin, Richard Piner, Seunghun Hong
-
Patent number: 7501069Abstract: This invention provides free-standing structures, functionalized free-standing structures and functional devices that are flexible, including nano- and micromachined flexible fabrics comprising woven networks and mesh networks. The present invention provides processing methods for making and functionalizing flexible free-standing structures having a wide range of integrated materials, devices and device components. The methods of the present invention are capable of providing large area functional electronic, optoelectronic, fluidic, and electromechanical devices and device arrays which exhibit good device performance in stretched, bent and/or deformed configurations.Type: GrantFiled: May 31, 2006Date of Patent: March 10, 2009Assignee: The Board of Trustees of the University of IllinoisInventors: Chang Liu, Nannan Chen
-
Patent number: 7491425Abstract: A resist medium in which features are lithographically produced by scanning a surface of the medium with an AFM probe positioned in contact therewith. The resist medium comprises a substrate; and a polymer resist layer within which features are produced by mechanical action of the probe. The polymer contains thermally reversible crosslinkages. Also disclosed is a method that generally includes scanning a surface of the polymer resist layer with an AFM probe positioned in contact with the resist layer, wherein heating the probe and a squashing-type mechanical action of the probe produces features in the layer by thermally reversing the crosslinkages.Type: GrantFiled: October 29, 2004Date of Patent: February 17, 2009Assignee: International Business Machines CorporationInventors: Michel Despont, Urs T. Duerig, Jane E. Frommer, Bernd W. Gotsmann, James L. Hedrick, Craig Jon Hawker, Robert D. Miller
-
Patent number: 7491422Abstract: A novel method of transporting ink to a substrate with dip-pen nanolithographic (DPN) stamp tips coated with polymer (e.g., polydimethylsiloxane (PDMS), etc.). This kind of tip adsorbs chemicals (“inks”) easily and is used to generate DPN nanopatterns that are imaged with the same tip after a DPN process. This method builds a bridge between micro-contact printing (?CP) and DPN, making it possible for one to easily generate smaller structures of any molecules that have been patterned by the ?CP technique. The easy tip-coating and writing process enriches the state-of-the-art DPN technique. The sub-100 nm DPN resolution obtained by using this kind of novel tip is comparable to that with a conventional Si3N4 probe tip. Importantly, the unique stamp tip was able to transfer solvent (e.g., liquid “ink”) onto a substrate, resulting in fabrication of hollow nanostructures with only one DPN holding/writing step.Type: GrantFiled: February 14, 2005Date of Patent: February 17, 2009Assignee: Nanoink, Inc.Inventors: Hua Zhang, Robert Elghanian, Linette Demers, Nabil Amro, Sandeep Disawal, Sylvain Cruchon-Dupeyrat
-
Patent number: 7462498Abstract: Substantially enhanced field emission properties are achieved by using a process of covering a non-adhesive material (for example, paper, foam sheet, or roller) over the surface of the CNTs, pressing the material using a certain force, and removing the material.Type: GrantFiled: June 20, 2005Date of Patent: December 9, 2008Assignee: Applied Nanotech Holdings, Inc.Inventors: Dongsheng Mao, Richard Fink, Zvi Yaniv
-
Patent number: 7452735Abstract: Composition of carbon nanotubes (CNTs) are produced into inks that are dispensable via printing or stencil printing processes. The CNT ink is dispensed into wells formed in a cathode structure through a stencil.Type: GrantFiled: March 8, 2006Date of Patent: November 18, 2008Assignee: Applied Nanotech Holdings, Inc.Inventors: Yunjun Li, Richard Fink, Mohshi Yang, Zvi Yaniv
-
Patent number: 7435353Abstract: The invention provides a method for forming a patterned material layer on a structure, by condensing a vapor to a solid condensate layer on a surface of the structure and then localized removal of selected regions of the condensate layer by directing a beam of energy at the selected regions. The structure can then be processed, with at least a portion of the patterned solid condensate layer on the structure surface, and then the solid condensate layer removed. Further there can be stimulated localized reaction between the solid condensate layer and the structure by directing a beam of energy at at least one selected region of the condensate layer.Type: GrantFiled: December 9, 2004Date of Patent: October 14, 2008Assignee: President and Fellows of Harvard CollegeInventors: Jene A. Golovchenko, Gavin M. King, Gregor M. Schürmann, Daniel Branton
-
Patent number: 7422696Abstract: Multicomponent nanorods having segments with differing electronic and/or chemical properties are disclosed. The nanorods can be tailored with high precision to create controlled gaps within the nanorods or to produce diodes or resistors, based upon the identities of the components-making up the segments of the nanorods. Macrostructural composites of these nanorods also are disclosed.Type: GrantFiled: June 30, 2005Date of Patent: September 9, 2008Assignee: Northwestern UniversityInventors: Chad A. Mirkin, Lidong Qin, Sungho Park, Ling Huang, Sung-Wook Chung
-
Patent number: 7422980Abstract: Methods of positioning and orienting nanostructures, and particularly nanowires, on surfaces for subsequent use or integration. The methods utilize mask based processes alone or in combination with flow based alignment of the nanostructures to provide oriented and positioned nanostructures on surfaces. Also provided are populations of positioned and/or oriented nanostructures, devices that include populations of positioned and/or oriented nanostructures, systems for positioning and/or orienting nanostructures, and related devices, systems and methods.Type: GrantFiled: November 21, 2006Date of Patent: September 9, 2008Assignee: Nanosys, Inc.Inventors: Xiangfeng Duan, R. Hugh Daniels, Chunming Niu, Vijendra Sahi, James M. Hamilton, Linda T. Romano
-
Patent number: 7344756Abstract: A method for fabricating scanning probe microscopy (SPM) probes is disclosed. The probes are fabricated by forming a structural layer on a substrate, wherein the substrate forms a cavity. A sacrificial layer is located between the substrate and the structural layer. Upon forming the structural layer, the sacrificial layer is selectively removed, and the probe is then released from the substrate. The substrate may then later be reused to form additional probes. Additionally, a contact printing method using a scanning probe microscopy probe is also disclosed.Type: GrantFiled: September 25, 2003Date of Patent: March 18, 2008Assignee: Northwestern UniversityInventors: Chad Mirkin, Hua Zhang
-
Patent number: 7306823Abstract: CIGS absorber layers fabricated using coated semiconducting nanoparticles and/or quantum dots are disclosed. Core nanoparticles and/or quantum dots containing one or more elements from group IB and/or IIIA and/or VIA may be coated with one or more layers containing elements group IB, IIIA or VIA. Using nanoparticles with a defined surface area, a layer thickness could be tuned to give the proper stoichiometric ratio, and/or crystal phase, and/or size, and/or shape. The coated nanoparticles could then be placed in a dispersant for use as an ink, paste, or paint. By appropriate coating of the core nanoparticles, the resulting coated nanoparticles can have the desired elements intermixed within the size scale of the nanoparticle, while the phase can be controlled by tuning the stochiometry, and the stoichiometry of the coated nanoparticle may be tuned by controlling the thickness of the coating(s).Type: GrantFiled: September 18, 2004Date of Patent: December 11, 2007Assignee: Nanosolar, Inc.Inventors: Brian M. Sager, Dong Yu, Matthew R. Robinson
-
Patent number: 7300860Abstract: A method of fabricating an integrated circuit comprises forming or providing a solution containing carbon nanotubes and forming a metal layer utilizing the solution.Type: GrantFiled: March 30, 2004Date of Patent: November 27, 2007Assignee: Intel CorporationInventor: Valery M. Dubin
-
Patent number: 7273636Abstract: The present invention includes a method of fabricating organic/inorganic composite nanostructures on a substrate comprising depositing a solution having a block copolymer and an inorganic precursor on the substrate using dip pen nanolithography. The process can comprise providing a substrate, providing a nanoscopic tip having an inking composition thereon, wherein the inking composition comprises at least one metal oxide precursor; and transferring the inking composition from the nanoscopic tip to the substrate to form a deposit on the substrate comprising at least one metal oxide precursor, and optionally further comprising the step of converting the metal oxide precursor on the substrate to form the metal oxide. The nanostructures comprises arrays of lines and/or dots having widths/diameters less than 1 micron.Type: GrantFiled: December 17, 2002Date of Patent: September 25, 2007Assignee: Northwestern UniversityInventors: Chad A. Mirkin, Vinayak P. Dravid, Ming Su, Xiaogang Liu
-
Patent number: 7264990Abstract: Nanotube films and articles and methods of making the same are disclosed. A conductive article includes an aggregate of nanotube segments in which the nanotube segments contact other nanotube segments to define a plurality of conductive pathways along the article. The nanotube segments may be single walled carbon nanotubes, or multi-walled carbon nanotubes. The various segments may have different lengths and may include segments having a length shorter than the length of the article. The articles so formed may be disposed on substrates, and may form an electrical network of nanotubes within the article itself. Conductive articles may be made on a substrate by forming a nanotube fabric on the substrate, and defining a pattern within the fabric in which the pattern corresponds to the conductive article.Type: GrantFiled: December 13, 2004Date of Patent: September 4, 2007Assignee: Nantero, Inc.Inventors: Thomas Rueckes, Brent M. Segal
-
Patent number: 7147966Abstract: The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.Type: GrantFiled: November 27, 2002Date of Patent: December 12, 2006Assignee: The Trustees of Boston CollegeInventors: Zhifeng Ren, Jian Wen, Jinghua Chen, Zhongping Huang, Dezhi Wang