Chemically Functionalized Patents (Class 977/877)
  • Patent number: 8968620
    Abstract: Control of lateral strain and lateral strain ratio (dt/db) between template and substrate through the selection of template and/or substrate thicknesses (Tt and/or Tb), control of template and/or substrate back pressure (Pt and/or Pb), and/or selection of material stiffness are described.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: March 3, 2015
    Assignees: Canon Nanotechnologies, Inc., Molecular Imprints, Inc.
    Inventors: Se-Hyuk Im, Mahadevan GanapathiSubramanian, Edward Brian Fletcher, Niyaz Khusnatdinov, Gerard M. Schmid, Mario Johannes Meissl, Anshuman Cherala, Frank Y. Xu, Byung-Jin Choi, Sidlgata V. Sreenivasan
  • Publication number: 20120276333
    Abstract: A method of nanoimprinting a piezoelectric polymeric material includes: heating a surface of the piezoelectric polymeric material to an imprinting temperature greater than (Tc?25) ° C. and less than Tc, in which Tc is the Curie temperature of the piezoelectric polymeric material; and pressing the heated surface of the piezoelectric polymeric material using a nanoimprinting template having a nanopillar structure so as to form the piezoelectric polymeric material with high aspect ratio nanopillars.
    Type: Application
    Filed: August 5, 2011
    Publication date: November 1, 2012
    Inventors: Chien-Chong Hong, Sheng-Yuan Huang
  • Patent number: 8276211
    Abstract: The invention provides methods of using positionally controlled molecular tools in an inert environment (such as ultra high vacuum) to fabricate complex atomically precise structures, including diamond, graphite, nanotubes, fullerenes, additional sets of the selfsame molecular tools, and others. Molecular tools have atomically precise tooltips which interact directly with a workpiece to add, remove, and modify specific atoms and groups of atoms, and have handles by which they can be held and positioned; tools can be recharged after use. Specific tooltips are brought into contact with and bond to specific feedstock molecules distributed on a presentation surface, and then transfer said feedstock molecules to specific atomic sites on a workpiece using mechanosynthetic chemical reactions. Specific sites on a workpiece can be made chemically reactive, facilitating the transfer of specific groups to them.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: September 25, 2012
    Inventors: Robert A. Freitas, Jr., Ralph C. Merkle
  • Patent number: 8171568
    Abstract: The invention provides methods of using positionally controlled molecular tools in an inert environment (such as ultra high vacuum) to fabricate complex atomically precise structures, including diamond, graphite, nanotubes, fullerenes, additional sets of the selfsame molecular tools, and others. Molecular tools have atomically precise tooltips which interact directly with a workpiece to add, remove, and modify specific atoms and groups of atoms, and have handles by which they can be held and positioned; tools can be recharged after use. Specific tooltips are brought into contact with and bond to specific feedstock molecules distributed on a presentation surface, and then transfer said feedstock molecules to specific atomic sites on a workpiece using mechanosynthetic chemical reactions. Specific sites on a workpiece can be made chemically reactive, facilitating the transfer of specific groups to them.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: May 1, 2012
    Inventors: Robert A. Freitas, Ralph C. Merkle
  • Patent number: 8046843
    Abstract: An instrument includes a probe having a porous tip, a tip positioning apparatus to position the tip with respect to a sample material, a probe positioning apparatus to position the probe and sample material with respect to each other, and a controller. The controller controls the probe positioning apparatus in positioning the probe over the sample and controls the tip positioning apparatus in lowering the tip into the sample material to produce an interaction between the porous tip and the sample material.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: October 25, 2011
    Assignee: General Nanotechnology LLC
    Inventor: Victor B. Kley
  • Patent number: 7943080
    Abstract: A method of aligning an imprint template with respect to a target region of a substrate is disclosed, the method including depositing a volume of an imprintable medium within the target region; contacting an imprint template to the imprintable medium so that the imprintable medium is compressed and allowing the imprint template, the target region, or both, to move laterally with respect to each other under interfacial tension forces between the target region and the imprint template, wherein a material which is less wetting than the substrate is provided in a configuration which at least partially surrounds the target region of the substrate.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: May 17, 2011
    Assignee: ASML Netherlands B.V.
    Inventors: Johan Frederik Dijksman, Raymond Jacobus Knaapen, Krassimir Todorov Krastev, Sander Frederik Wuister, Yvonne Wendela Kruijt-Stegeman, Ivar Schram
  • Patent number: 7883685
    Abstract: Separation of carbon nanotubes or fullerenes according to diameter through non-covalent pi-pi interaction with molecular clips is provided. Molecular clips are prepared by Diels-Alder reaction of polyacenes with a variety of dienophiles. The pi-pi complexes of carbon nanotubes with molecular clips are also used for selective placement of carbon nanotubes and fullerenes on substrates.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: February 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Cherie R. Kagan, Rudolf Tromp
  • Patent number: 7879307
    Abstract: Separation of carbon nanotubes or fullerenes according to diameter through non-covalent pi-pi interaction with molecular clips is provided. Molecular clips are prepared by Diels-Alder reaction of polyacenes with a variety of dienophiles. The pi-pi complexes of carbon nanotrubes with molecular clips are also used for selective placement of carbon nanotubes and fullerenes on substrates.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: February 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Cherie R. Kagan, Rudolf Tromp
  • Patent number: 7655269
    Abstract: The invention provides sensor, preferably biosensor devices and method of fabrication. The devices have significant advantages over the prior art methods having compatibility with future trends in clinical diagnostics and chemical detection. The underlying principle involves the integration of nanometer diameter, micron long metal or semiconductor rods onto a substrate to form a suspended nanomechanical cantilevers. The cantilever rods are rigidly attached to the substrate on one or both ends, and resonate at a characteristic frequency depending on the diameter, length, and stiffness of the rod. The metal or semiconductor rods are integrated onto the substrate using electrofluidic or fluidic assembly techniques. A receptor coating is placed on the metal or semiconductor rods prior to or following rod alignment using self-assembly chemistries.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: February 2, 2010
    Assignee: The Penn State Research Foundation
    Inventors: Theresa S. Mayer, Christine D. Keating
  • Patent number: 7604758
    Abstract: A process for producing a polymer optical waveguide including: 1) preparing a rubber mold having a composite layer structure in which a rubber layer which has a concave portion corresponding to an optical waveguide core and contains a rubber mold-forming curable resin is buried in a rubber layer-forming concave portion of a rigid substrate having the rubber layer-forming concave portion; 2) bringing a cladding substrate into close contact with the rubber mold; 3) filling the concave portion of the rubber mold, with which the cladding substrate has been brought into close contact, with a core-forming curable resin; 4) curing the filled core-forming curable resin; 5) removing the rubber mold from the cladding substrate; and 6) forming a cladding layer on the cladding substrate on which the core has been formed.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: October 20, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Eiichi Akutsu, Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda
  • Patent number: 7344756
    Abstract: A method for fabricating scanning probe microscopy (SPM) probes is disclosed. The probes are fabricated by forming a structural layer on a substrate, wherein the substrate forms a cavity. A sacrificial layer is located between the substrate and the structural layer. Upon forming the structural layer, the sacrificial layer is selectively removed, and the probe is then released from the substrate. The substrate may then later be reused to form additional probes. Additionally, a contact printing method using a scanning probe microscopy probe is also disclosed.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: March 18, 2008
    Assignee: Northwestern University
    Inventors: Chad Mirkin, Hua Zhang
  • Patent number: 7343857
    Abstract: An imprint apparatus configured such that it can press a laminate structure in which a magnetic film and a resist film are sequentially laminated on a substrate. The imprint apparatus includes a first press plate configured to mount the laminate structure, a second press plate adapted for sandwiching the laminate structure, a stamper placed on a surface of the second press plate, and has projections and recesses configured to be transferred onto the resist film, and a light source configured to dispose on the same plane as the laminate structure, and is oriented so that the light source can shine the resist film.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: March 18, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Sakuarai, Akira Kikitsu, Naoko Kihara