Assembling Of Separate Components (e.g., By Attaching, Etc.) Patents (Class 977/882)
-
Patent number: 9034085Abstract: A composition of matter, and method to make same, for a nano-based material including a nanocarbon support to which is attached an aliphatic amine. In particular, the composition of matter is an aliphatic amine-nanocarbon material that includes a nanocarbon (NC) support, such as C60, nano-graphite, graphene, nanocarbon ribbons, graphite intercalation compounds, graphite oxide, nano-coal, nanohorns, and combinations thereof, and further includes an aliphatic amine, such as polyethyleneimine (PEI).Type: GrantFiled: December 20, 2013Date of Patent: May 19, 2015Assignee: WILLIAM MARSH RICE UNIVERSITYInventors: Andrew R. Barron, Eoghan Dillon
-
Publication number: 20150102284Abstract: A nanowire device and a method of making a nanowire device are provided. The device includes a plurality of nanowires functionalized with different functionalizing compounds. The method includes functionalizing the nanowires with a functionalizing compound, dispersing the nanowires in a polar or semi-polar solvent, aligning the nanowires on a substrate such that longitudinal axes of the nanowires are oriented about perpendicular to a major surface of the substrate, and fixing the nanowires to the substrate.Type: ApplicationFiled: April 11, 2013Publication date: April 16, 2015Inventors: Tommy Mikael Garting, Maria Huffman, Lars Göran Stefan Ulvenlund, Johan Eric Borgström, Umear Naseem
-
Patent number: 9005664Abstract: The present invention is directed to co-assembled nanoparticle composition comprising denatured ?-lactoglobulin and at least one nutraceutical compound, specifically polyphenols, such as EGCG, compositions comprising same and methods of preparing thereof.Type: GrantFiled: October 17, 2011Date of Patent: April 14, 2015Assignee: Technion Research and Development Foundation Ltd.Inventors: Yoav D. Livney, Avi Shpigelman
-
Patent number: 8986999Abstract: Methods and apparatuses for encapsulating inorganic micro- or nanostructures within polymeric microgels are described. In various embodiments, viruses are encapsulated with microgels during microgel formation. The viruses can provide a template for in situ synthesis of the inorganic structures within the microgel. The inorganic structures can be distributed substantially homogeneously throughout the microgel, or can be distributed non-uniformly within the microgel. The inventive microgel compositions can be used for a variety of applications including electronic devices, biotechnological devices, fuel cells, display devices and optical devices.Type: GrantFiled: February 7, 2014Date of Patent: March 24, 2015Assignees: Massachusetts Institute of Technology, President and Fellows of Harvard UniversityInventors: Yoon Sung Nam, Angela Belcher, Andrew Parsons Magyar, Daeyeon Lee, Jin-Woong Kim, David Weitz
-
Patent number: 8966730Abstract: A method of manufacturing a sensor network is described which includes stretching a silicon substrate over a desired area, and generating a plurality of nodes fabricated on the stretchable silicon substrate. The nodes include at least one of an energy harvesting and storage element, a communication device, a sensing device, and a processor. The nodes are interconnected via interconnecting conductors formed in the substrate.Type: GrantFiled: April 12, 2011Date of Patent: March 3, 2015Assignee: The Boeing CompanyInventors: Michael Alexander Carralero, John Lyle Vian
-
Patent number: 8900517Abstract: An electronic system for selectively detecting and identifying a plurality of chemical species, which comprises an array of nanostructure sensing devices, is disclosed. Within the array, there are at least two different selectivities for sensing among the nanostructure sensing devices. Methods for fabricating the electronic system are also disclosed. The methods involve modifying nanostructures within the devices to have different selectivity for sensing chemical species. Modification can involve chemical, electrochemical, and self-limiting point defect reactions. Reactants for these reactions can be supplied using a bath method or a chemical jet method. Methods for using the arrays of nanostructure sensing devices to detect and identify a plurality of chemical species are also provided.Type: GrantFiled: November 9, 2007Date of Patent: December 2, 2014Assignee: Nanomix, Inc.Inventors: Jean-Christophe P. Gabriel, Philip G. Collins, George Gruner, Keith Bradley
-
Publication number: 20140318967Abstract: Damascene templates have two-dimensionally patterned raised metal features disposed on an underlying conductive layer extending across a substrate. The templates are topographically flat overall, and the patterned conductive features establish micron-scale and nanometer-scale patterns for the assembly of nanoelements into nanoscale circuits and sensors. The templates are made using microfabrication techniques together with chemical mechanical polishing. These templates are compatible with various directed assembly techniques, including electrophoresis, and offer essentially 100% efficient assembly and transfer of nanoelements in a continuous operation cycle. The templates can be repeatedly used for transfer of patterned nanoelements thousands of times with minimal or no damage, and the transfer process involves no intermediate processes between cycles. The assembly and transfer processes employed are carried out at room temperature and pressure and are thus amenable to low cost, high-rate device production.Type: ApplicationFiled: November 8, 2012Publication date: October 30, 2014Inventors: Ahmed Busnaina, Hanchul Cho, Sivasubramanian Somu, Jun Huang
-
Patent number: 8865796Abstract: Methods of synthesizing a binary polymer functionalized nanoparticle are generally provided. In one embodiment, a first anchoring compound is attached to a nanoparticle, and a first plurality of first monomers are polymerized on the first anchoring compound to form a first polymeric chain covalently bonded to the nanoparticle via the first anchoring compound. In another embodiment, a first polymeric chain can be attached to the nanoparticle, where the first polymeric chain has been polymerized prior to attachment to the nanoparticle. Thereafter, a second anchoring compound is attached to the nanoparticle, and a second plurality of second monomers are polymerized on the second anchoring compound to form a second polymeric chain covalently bonded to the nanoparticle via the second anchoring compound. Nanoparticles are also generally provided having multiple polymeric assemblies.Type: GrantFiled: August 8, 2012Date of Patent: October 21, 2014Assignee: University of South CarolinaInventors: Brian C. Benicewicz, Atri Rungta, Anand Viswanath, Linda S. Schadler Feist, Douglas Dukes
-
Patent number: 8846580Abstract: This invention relates generally to biosensor technology, and pertains more particularly to novel multifunctional biosensors based on ordered arrays of metallic, semiconductors and magnetic nano-islands for medical, biological, biochemical, chemical and environmental applications.Type: GrantFiled: June 9, 2006Date of Patent: September 30, 2014Assignee: Gilupi GmbHInventors: Ulrich Pison, Michael Giersig, Alex Schaefer
-
Patent number: 8800138Abstract: A method for forming an electronic device on a flexible substrate conditions a surface of the flexible substrate to increase its malleability and to provide a conditioned substrate surface. A master surface is impressed against the conditioned substrate surface. The master surface is then released from the conditioned substrate surface, thereby forming a circuit-side surface on the substrate. The electronic device is then formed on the circuit-side surface. The substrate may be supported on a carrier during the method.Type: GrantFiled: February 27, 2009Date of Patent: August 12, 2014Assignee: Carestream Health, Inc.Inventors: Timothy J. Tredwell, Roger S. Kerr
-
Patent number: 8771957Abstract: The invention provides methods and kits for ordering sequence information derived from one or more target polynucleotides. In one aspect, one or more tiers or levels of fragmentation and aliquoting are generated, after which sequence information is obtained from fragments in a final level or tier. Each fragment in such final tier is from a particular aliquot, which, in turn, is from a particular aliquot of a prior tier, and so on. For every fragment of an aliquot in the final tier, the aliquots from which it was derived at every prior tier is known, or can be discerned. Thus, identical sequences from overlapping fragments from different aliquots can be distinguished and grouped as being derived from the same or different fragments from prior tiers. When the fragments in the final tier are sequenced, overlapping sequence regions of fragments in different aliquots are used to register the fragments so that non-overlapping regions are ordered.Type: GrantFiled: August 23, 2013Date of Patent: July 8, 2014Assignee: Callida Genomics, Inc.Inventor: Radoje Drmanac
-
Patent number: 8753526Abstract: The present application relates to a porous thin film having holes, wherein the holes are formed in the top part and/or the bottom part of the thin film and the holes are linked to the pores of the thin film; and the present invention also relates to a production method for a porous thin film having holes, comprising the use of a particle alignment layer as a mold.Type: GrantFiled: August 9, 2011Date of Patent: June 17, 2014Assignee: Industry-University Cooperation Foundation Sogang UniversityInventors: Kyung Byung Yoon, Hyun Sung Kim, Myunpyo Hong, Na Pi Ha
-
Patent number: 8734904Abstract: Methods are disclosed for forming topographical features. In one method, a pre-patterned structure is provided which comprises i) a support member having a surface and ii) an element for topographically guiding segregation of a polymer mixture including a first polymer and a second polymer, the element comprising a feature having a sidewall adjoined to the surface. The polymer mixture is disposed on the pre-patterned structure, wherein the disposed polymer mixture has contact with the sidewall and the surface. The first polymer and the second polymer are segregated in a plane parallel to the surface, thereby forming a segregated structure comprising a first polymer domain and a second polymer domain.Type: GrantFiled: November 30, 2010Date of Patent: May 27, 2014Assignees: International Business Machines Corporation, JSR CorporationInventors: Joy Cheng, Hayato Namai, Charles Thomas Rettner, Daniel Paul Sanders, Ratnam Sooriyakumaran
-
Patent number: 8685323Abstract: Methods and apparatuses for encapsulating inorganic micro- or nanostructures within polymeric microgels are described. In various embodiments, viruses are encapsulated with microgels during microgel formation. The viruses can provide a template for in situ synthesis of the inorganic structures within the microgel. The inorganic structures can be distributed substantially homogeneously throughout the microgel, or can be distributed non-uniformly within the microgel. The inventive microgel compositions can be used for a variety of applications including electronic devices, biotechnological devices, fuel cells, display devices and optical devices.Type: GrantFiled: September 19, 2008Date of Patent: April 1, 2014Assignees: Massachusetts Institute of Technology, President and Fellows of Harvard CollegeInventors: Yoon Sung Nam, Angela Belcher, Andrew Magyar, Daeyeon Lee, Jin-Woong Kim, David Weitz
-
Patent number: 8661635Abstract: A piezoelectronic device and a method of fabricating the same are provided. The piezoelectronic device has a plurality of carbon nanotubes; at least one piezoceramic layer covering the plurality of carbon nanotubes; and a supporting material for supporting the carbon nanotubes and disposed between the carbon nanotubes, the supporting layer being coated with at least one piezoceramic layer, wherein the plurality of carbon nanotubes is arranged in a comb-shape.Type: GrantFiled: May 12, 2011Date of Patent: March 4, 2014Assignee: National Tsing Hua UniversityInventors: Wen-Kuang Hsu, Hsin-Fu Kuo, Yu-Hsien Lin, Chiung-Wen Tang, Chieh-Lien Lu, Yao-Cheng Lai
-
Publication number: 20140042376Abstract: A nanostructure and method for assembly thereof are disclosed. The nanostructure includes a gain medium nanoparticle; an output coupler nanoparticle being discrete from and linked to the gain medium nanoparticle; and a plurality of metal nanoparticles being linked about the gain medium nanoparticle, wherein the gain medium nanoparticle and the output coupler nanoparticle are included in the nanostructure in a one to one ratio.Type: ApplicationFiled: August 5, 2013Publication date: February 13, 2014Applicant: BAE Systems Information and Electronic Systems Integration Inc.Inventors: Idan Mandelbaum, Tadd C. Kippeny
-
Publication number: 20140038034Abstract: A method of making an anode includes the steps of providing fibers from a carbonaceous precursor, the carbon fibers having a glass transition temperature Tg. In one aspect the carbonaceous precursor is lignin. The carbonaceous fibers are placed into a layered fiber mat. The fiber mat is fused by heating the fiber mat in the presence of oxygen to above the Tg but no more than 20% above the Tg to fuse fibers together at fiber to fiber contact points and without melting the bulk fiber mat to create a fused fiber mat through oxidative stabilization. The fused fiber mat is carbonized by heating the fused fiber mat to at least 650° C. under an inert atmosphere to create a carbonized fused fiber mat. A battery anode formed from carbonaceous precursor fibers is also disclosed.Type: ApplicationFiled: August 6, 2012Publication date: February 6, 2014Applicant: UT-BATTELLE, LLCInventors: Orlando RIOS, Wyatt Evan TENHAEFF, Claus DANIEL, Nancy Johnston DUDNEY, Alexander JOHS, Grady Alexander NUNNERY, Frederick Stanley BAKER
-
Patent number: 8640312Abstract: A manufacturing method of an apparatus for generating electrical energy according to an embodiment of the present invention comprises disposing a first electrode on a substrate, disposing a nanowire comprising a piezoelectric material on the first electrode, disposing a photoelectric conversion layer which is electrically connected to the nanowire on the first electrode, disposing, a second electrode on the nanowire and the photoelectric conversion layer, connecting the first electrode and the second electrode by a connection part, and disposing a storage part which is electrically connected to the connection part, wherein when an external force is applied to at least one of the first electrode and the second electrode, the nanowire is transformed to generate electrical energy.Type: GrantFiled: May 11, 2012Date of Patent: February 4, 2014Assignees: Samsung Electronics Co., Ltd., Kumoh National Institute of Technology Industry-Academic CooperationInventors: Duk-Hyun Choi, Jae-Young Choi, Sang-Yoon Lee, Sang-Woo Kim
-
Patent number: 8636830Abstract: A composition of matter, and method to make same, for a nano-based material including a nanocarbon support to which is attached an aliphatic amine. In particular, the composition of matter is an aliphatic amine-nanocarbon material that includes a nanocarbon (NC) support, such as C60, nano-graphite, graphene, nanocarbon ribbons, graphite intercalation compounds, graphite oxide, nano-coal, nanohorns, and combinations thereof, and further includes an aliphatic amine, such as polyethyleneimine (PEI).Type: GrantFiled: June 13, 2011Date of Patent: January 28, 2014Assignee: William Marsh Rice UniversityInventors: Andrew R. Barron, Eoghan Dillon
-
Publication number: 20140024818Abstract: The present invention provides a method for preparing a nanoassembly that includes the step of reacting the assembly template with at least one nanomaterial to form the nanoassembly using a bifunctional linker.Type: ApplicationFiled: November 13, 2007Publication date: January 23, 2014Inventors: Yi Lu, Jung Heon Lee, Mehmet Veysel Yigit
-
Publication number: 20130327894Abstract: A spacecraft carbon nanotube shield is disclosed. Shield segments are produced in a facility in space. The segments are transported from the facility to a vicinity of a spacecraft hull. The segments are assembled over the hull to substantially cover an area of the hull.Type: ApplicationFiled: June 11, 2012Publication date: December 12, 2013Inventor: Robert T. Bigelow
-
Publication number: 20130308736Abstract: A fusion fuel capsule is disclosed having a substantially spherical ablator shell. The interior surface of the shell is lined with a nanoporous scaffold layer wetted with either a fully or partially liquid mixture of deuterium and tritium.Type: ApplicationFiled: November 6, 2012Publication date: November 21, 2013Applicant: Lawrence Livermore National Security, LLCInventor: Lawrence Livermore National Security, LLC
-
Publication number: 20130284596Abstract: The invention relates to a biopile electrode or biosensor electrode intended to be immersed in a liquid medium containing a target and an oxidizer, respectively a reducer, in which the anode comprises an enzyme able to catalyse the oxidation of a target, and the cathode comprises an enzyme able to catalyse the reduction of the oxidizer, and in which each of the anode electrode and cathode electrode consists of a solid agglomeration of carbon nanotubes mixed with the enzyme, and is secured to an electrode wireType: ApplicationFiled: August 18, 2011Publication date: October 31, 2013Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE JOSEPH FOURIERInventors: Abdelkader Zebda, Alan Le Goff, Michael Holzinger, Serge Cosnier
-
Publication number: 20130277870Abstract: The present invention provides a method of manufacturing a nano-layered light guide plate comprising, forming by a coextrusion method a multi-layered molten sheet comprising a plurality of two or more different alternating material layers and casting the coextruded sheet into a nip between a pressure roller and a pattern roller to form a nano-layered sheet having a discrete micro-pattern on at least one principal surface thereof. In addition, the invention further provides cutting and finishing the extruded micro-patterned sheet to form the nano-layered light guide plate, comprising a plurality of two or more different alternating material layers, with each layer having a thickness of less than a quarter wavelength of visible light.Type: ApplicationFiled: April 18, 2012Publication date: October 24, 2013Applicant: SKC Haas Display Films Co., Ltd.Inventors: Jehuda GREENER, Joseph Dooley, Michael R. Landry
-
Patent number: 8563081Abstract: Fabrication and arrangement of nanoparticles into one-dimensional linear chains is achieved by successive chemical reactions, each reaction adding one or more nanoparticles by building onto exposed, unprotected linker functionalities. Optionally, protecting groups may be used to control and organize growth. Nanoparticle spheres are functionalized in a controlled manner in order to enable covalent linkages. Functionalization of nanoparticles is accomplished by either ligand exchange or chemical modification of the terminal functional groups of the capping ligand. Nanoparticle chains are obtained by a variety of connectivity modes such as direct coupling, use of linker molecules, and use of linear polymeric templates. In particular, a versatile building block system is obtained through controlled monofunctionalization of nanoparticles.Type: GrantFiled: January 22, 2013Date of Patent: October 22, 2013Assignee: Massachusetts Institute of TechnologyInventors: Joseph M. Jacobson, David W. Mosley, Kie-Moon Sung
-
Publication number: 20130266328Abstract: Apparatus for transmitting and receiving information using one or more quantum-entangled particles. The apparatus may include a first substrate including a first row of quantum dots and a second substrate including a second row of quantum dots. The apparatus may also include a beam splitter configured to inject a first particle into a first quantum dot and to inject a second particle into a second quantum dot. A physical property of the first particle may be in a quantum-entangled state with a physical property of the second particle. The apparatus may further include a first wave source configured to move the first particle along the first row of quantum dot, and a second wave source configured to move the second particle along the second row of quantum dots.Type: ApplicationFiled: March 15, 2013Publication date: October 10, 2013Inventor: Marc S. Paller
-
Publication number: 20130228364Abstract: A method for positioning carbon nanotubes on a substrate, the substrate including a first electrode and a second electrode thereon, the second electrode being positioned oppositely from the first electrode; the method includes: applying a first AC voltage across the first and second electrodes; providing a first resistance in series with the first AC voltage; and introducing a solution including at least one carbon nanotube; wherein, when the first AC voltage is applied through the first resistance across the first and second electrodes, the at least one carbon nanotube attaches to the first and second electrodes. Another aspect of the invention includes providing a metallic area between the first and second electrodes.Type: ApplicationFiled: August 26, 2008Publication date: September 5, 2013Applicant: The Trustees of Columbia University In The City Of New YorkInventors: Sarbajit Banerjee, Irving P. Herman
-
Publication number: 20130164222Abstract: Provided are a preparation method of iron oxide-based paramagnetic or pseudo-paramagnetic nanoparticles, iron oxide-based nanoparticles prepared by the same, and a T1 contrast agent including the same. More particularly, the disclosure describes a method for preparation of iron oxide nanoparticles having a extremely small and uniform size of 4 nm or less based on thermal decomposition of iron oleate complex, iron oxide-based paramagnetic or pseudo-paramagnetic nanoparticles prepared by the same, and a T1 contrast agent including iron oxide-based paramagnetic or pseudo-paramagnetic nanoparticles.Type: ApplicationFiled: August 5, 2011Publication date: June 27, 2013Applicant: Hanwha Chemical CorporationInventors: Taeg Hwan Hyeon, Byung Hyo Kim, No Hyun Lee, Eung Gyu Kim, Bong Sik Jeon, Eun Byul Kwon, Ju Young Park, Wan Jae Myeong
-
Patent number: 8468663Abstract: A method for manufacturing an apparatus for generating electrical energy may include; disposing a nanowire including a piezoelectric material on a first electrode, disposing an active layer, which is electrically connected to the nanowire, on the first electrode, disposing an insulating film on the nanowire, disposing a conductive layer on the active layer, and disposing a second electrode in proximity to the nanowire and substantially opposite to the first electrode.Type: GrantFiled: April 30, 2012Date of Patent: June 25, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Dukhyun Choi, Jaeyoung Choi
-
Patent number: 8465803Abstract: A self-replicating monolayer system employing polymerization of monomers or nanoparticle ensembles on a defined template provides synthesis of two-dimensional single molecule polymers. Systems of self-replicating monolayers are used as templates for growth of inorganic colloids. A preferred embodiment employs SAM-based replication, wherein an initial monolayer is patterned and used as a template for self-assembly of a second monolayer by molecular recognition. The second monolayer is polymerized in place and the monolayers are separated to form a replicate. Both may then function as templates for monolayer assemblies. A generic self-replicating monomer unit comprises a polymerizable moiety attached by methylene repeats to a recognition element and an ending unit that will not interfere with the chosen recognition chemistry. The recognition element is self-complementary, unless two replicating monomers with compatible cross-linking chemistry are employed.Type: GrantFiled: July 23, 2012Date of Patent: June 18, 2013Assignee: Massachusetts Institute of TechnologyInventors: Joseph M. Jacobson, David W. Mosley
-
Patent number: 8450833Abstract: A semiconductor device is formed with sub-resolution features and at least one additional feature having a relatively larger critical dimension using only two masks. An embodiment includes forming a plurality of first mandrels, having a first width, and at least one second mandrel, having a second width greater than the first width, overlying a target layer using a first mask, forming sidewall spacers along the length and width of the first and second mandrels, forming a filler adjacent each sidewall spacer, the filler having the first width, removing the filler adjacent sidewall spacers along the widths of the first and second mandrels using a second mask, removing the sidewall spacers, and etching the target layer between the filler and the first and second mandrels, thereby forming at least two target features with different critical dimensions.Type: GrantFiled: August 20, 2010Date of Patent: May 28, 2013Assignee: GlobalFoundries Inc.Inventor: Ryoung-han Kim
-
Patent number: 8425735Abstract: A method of fabricating pillared graphene assembles alternate layers of graphene sheets and fullerenes to form a stable protostructure. Energy is added to the protostructure to break the carbon-carbon bonds at the fullerene-to-graphene attachment points of the protostructure and allow the bonds to reorganize and reform into a stable lower energy unitary pillared graphene nanostructure in which open nanotubes are conjoined between graphene sheets. The attachment points may be functionalized using tether molecules to aid in attachment, and add chemical energy to the system. The arrangement and attachment spacing of the fullerenes may be determined using spacer molecules or an electric potential.Type: GrantFiled: December 21, 2010Date of Patent: April 23, 2013Assignees: Raytheon Company, The Arizona Board of Regents on Behalf of The University of ArizonaInventors: Delmar L. Barker, William R. Owens, John Warren Beck
-
Patent number: 8426623Abstract: A surface modified nanoparticle includes a nanoparticle and a phenol compound used for modifying the nanoparticle. The phenol compound has a formula of (a) or (b), wherein n=1˜9, X is selected from the group consisted of NH2, OH, PH4, COOH and SH, R1 is selected from the group consisted of C1-C5 alkyl group, aryl group, alkenyl group, alkynyl group, alkylamino group and alkoxy group. Each carbon atom of the phenol group may be independently substituted or non-substituted. The substituent of the carbon atom of the phenol may be selected from the group consisted of halogen, C1-C5 alkyl group, cyano (CN), trifluoromethyl (CF3), alkylamino group, amino and alkoxy group. The present invention may be used for anti-oxidant and/or decreasing the toxicity of the nanoparticle. A preparation method of surface modified nanoparticle is also herein provided.Type: GrantFiled: August 30, 2010Date of Patent: April 23, 2013Assignee: National Tsing Hua UniversityInventors: Yuh-Jeen Huang, Kuan-Yi Chen
-
Publication number: 20130062212Abstract: A technique for embedding a nanotube in a nanopore is provided. A membrane separates a reservoir into a first reservoir part and a second reservoir part, and the nanopore is formed through the membrane for connecting the first and second reservoir parts. An ionic fluid fills the nanopore, the first reservoir part, and the second reservoir part. A first electrode is dipped in the first reservoir part, and a second electrode is dipped in the second reservoir part. Driving the nanotube into the nanopore causes an inner surface of the nanopore to form a covalent bond to an outer surface of the nanotube via an organic coating so that the inner surface of the nanotube will be the new nanopore with a super smooth surface for studying bio-molecules while they translocate through the nanotube.Type: ApplicationFiled: September 9, 2011Publication date: March 14, 2013Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Ali Afzali-Ardakani, Binquan Luan, Hongbo Peng
-
Patent number: 8389050Abstract: A method of coating an inner surface of a tubular workpiece includes immersing the tubular workpiece lengthwise into a liquid subphase, inserting a first end of a delivery tube into the tubular workpiece so as to bring a distal end surface of the delivery tube to within a predetermined distance from the liquid surface, dispensing a suspension of coating particles into the first delivery tube to form a monolayer of the coating particles on the liquid surface in an area of the liquid surface between the inner surface of the tubular workpiece and an outer surface of the first delivery tube, and withdrawing at least a portion of the tubular workpiece from the liquid subphase so as to form a coating of the coating particles on a portion of the inner surface of the workpiece.Type: GrantFiled: November 21, 2008Date of Patent: March 5, 2013Assignee: Corning IncorporatedInventors: Thomas LaVee Buck, Jia Liu, Natesan Venkataraman
-
Patent number: 8361853Abstract: The present disclosure provides a semiconductor structure including a nanoribbon-containing layer of alternating graphene nanoribbons separated by alternating insulating ribbons. The alternating graphene nanoribbons are parallel to a surface of an underlying substrate and, in some embodiments, might be oriented along crystallographic directions of the substrate. The alternating insulating ribbons may comprise hydrogenated graphene, i.e., graphane, fluorinated graphene, or fluorographene. The semiconductor structure mentioned above can be formed by selectively converting portions of an initial graphene layer into alternating insulating ribbons, while the non-converted portions of the initial graphene form the alternating graphene nanoribbons. Semiconductor devices such as, for example, field effect transistors, can be formed atop the semiconductor structure provided in the present disclosure.Type: GrantFiled: October 12, 2010Date of Patent: January 29, 2013Assignee: International Business Machines CorporationInventors: Guy Cohen, Christos D. Dimitrakopoulos, Alfred Grill, Robert L. Wisnieff
-
Publication number: 20120309904Abstract: The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.Type: ApplicationFiled: October 18, 2010Publication date: December 6, 2012Applicant: The Regents of the University of CaliforniaInventors: Ting Xu, Yue Zhao, Kari Thorkelsson
-
Publication number: 20120296124Abstract: Efficient and recyclable heterogeneous nanocatalysts and methods of synthesizing and using the same are provided.Type: ApplicationFiled: February 14, 2012Publication date: November 22, 2012Inventors: Tewodros Asefa, Ankush V. Biradar, Yanfei Wang
-
Publication number: 20120288626Abstract: A self-replicating monolayer system employing polymerization of monomers or nanoparticle ensembles on a defined template provides synthesis of two-dimensional single molecule polymers. Systems of self-replicating monolayers are used as templates for growth of inorganic colloids. A preferred embodiment employs SAM-based replication, wherein an initial monolayer is patterned and used as a template for self-assembly of a second monolayer by molecular recognition. The second monolayer is polymerized in place and the monolayers are separated to form a replicate. Both may then function as templates for monolayer assemblies. A generic self-replicating monomer unit comprises a polymerizable moiety attached by methylene repeats to a recognition element and an ending unit that will not interfere with the chosen recognition chemistry. The recognition element is self-complementary, unless two replicating monomers with compatible cross-linking chemistry are employed.Type: ApplicationFiled: July 23, 2012Publication date: November 15, 2012Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGYInventors: Joseph M. Jacobson, David W. Mosley
-
Publication number: 20120288553Abstract: The present invention provides a method for controlling toxicity of metallic particles and a low-toxicity composite of metallic nanoparticles and inorganic clay. The metallic nanoparticles are effective in preventing infection and in skinning over, and thus suitable for treating scalds/burns. In the composite, the weight ratio of metallic nanoparticles to inorganic clay preferably ranges 0.1/99.9 to 6.0/94.0 in a size of about 5 to 100 nm. Preferably, the metal is silver and the inorganic clay is nano silicate platelets.Type: ApplicationFiled: July 14, 2012Publication date: November 15, 2012Applicant: NATIONAL TAIWAN UNIVERSITYInventors: Jiang-Jen Lin, Hong-Lin Su, Fu-Chuo Peng, Chia-Yu Chu, Ying-Fang Chiu, Pei-Ru Li, Hsi-Tai Sun
-
Patent number: 8286803Abstract: A method for fabricating a reverse osmosis membrane is described. The method includes aligning a plurality of carbon nanotubes at the interface of two liquids, the first liquid being an aqueous layer, and the second layer being an organic layer that is immiscible to the aqueous layer, forming a thin layer selective membrane around the aligned carbon nanotubes at the interface of the two liquids, and bonding the thin layer selective membrane/carbon nanotube composite onto a structural support layer.Type: GrantFiled: June 18, 2009Date of Patent: October 16, 2012Assignee: The Boeing CompanyInventors: Andrew P. Nowak, Larken E. Euliss
-
Publication number: 20120235541Abstract: The present invention relates to piezoelectrie energy conversion assemblies. The assembly includes a piezoelectric nanowire (such as a ZnO nanowire), an electrically conductive nanofilament (such as a carbon nanotube), a first electrically conductive element (such as a first metallic trace), and a second electrically conductive element (such as a second metallic trace). The first electrically conductive element is electrically connected to the piezoelectric nanowire, and the second electrically conductive element is electrically connected to the electrically conductive nanofilament. The piezoelectric nanowire and electrically conductive nanofilament are operable to contact one another such that a charge can flow from the first electrically conductive element, through the piezoelectric nanowire and the electrically conductive nanofilament, to the second electrically conductive element.Type: ApplicationFiled: November 30, 2010Publication date: September 20, 2012Inventor: Joseph F. Pinkerton
-
Publication number: 20120227800Abstract: A method of a general biological approach to synthesizing compact nanotubes using a biological template is described.Type: ApplicationFiled: March 10, 2011Publication date: September 13, 2012Applicant: Massachusetts Institute of TechnologyInventors: Xiangnan Dang, Hyunjung Yi, Angela M. Belcher, Paula T. Hammond
-
Patent number: 8236626Abstract: Disclosed is a method for making graphene nanoribbons (GNRs) by controlled unzipping of structures such as carbon nanotubes (CNTs) by etching (e.g., argon plasma etching) of nanotubes partly embedded in a polymer film. The GNRs have smooth edges and a narrow width distribution (2-20 nm). Raman spectroscopy and electrical transport measurements reveal the high quality of the GNRs. Such a method of unzipping CNTs with well-defined structures in an array will allow the production of GNRs with controlled widths, edge structures, placement and alignment in a scalable fashion for device integration. GNRs may be formed from nanostructures in a controlled array to form arrays of parallel or overlapping structures. Also disclosed is a method in which the CNTs are in a predetermined pattern that is carried over and transferred to a substrate for forming into a semiconductor device.Type: GrantFiled: April 15, 2010Date of Patent: August 7, 2012Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Hongie Dai, Liying Jiao
-
Patent number: 8237155Abstract: Nanotube electronic devices exhibit selective affinity to disparate nanotube types. According to an example embodiment, a semiconductor device exhibits a treated substrate that selectively interacts (e.g., chemically) with nanotubes of a first type, relative to nanotubes of a second type, the respective types including semiconducting-type and metallic-type nanotubes. The selective interaction is used to set device configuration characteristics based upon the nanotube type. This selective-interaction approach can be used to set the type, and/or characteristics of nanotubes in the device.Type: GrantFiled: June 26, 2009Date of Patent: August 7, 2012Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Zhenan Bao, Melburne Lemieux, Justin P. Opatkiewicz, Soumendra N. Barman
-
Publication number: 20120195940Abstract: Nanolipidic Particles (NLPs) having average mean diameters of 1 nm to 20 nm are made from a precursor solution. NLPs can be loaded with a desired passenger molecule. Assemblies of these particles, called NLP assemblies, result in a vehicle population of a desired size. Single application or multifunction NLP assemblies are made from the loaded NLPs and range in size from about 30 to about 200 nm. A method of using preloaded NLPs to make larger carrier vehicles or a mixed population provides increased encapsulation efficiency. NLPs have application in the cosmetics, pharmaceutical, and food and beverage industries.Type: ApplicationFiled: April 10, 2012Publication date: August 2, 2012Applicant: DERMAZONE SOLUTIONS INC.Inventor: Michael W. Fountain
-
Publication number: 20120190732Abstract: The present invention provides compositions comprising a ligand-nucleic acid nanostructure that promote tumor cell-specific killing and methods of using the compositions. Specially, the invention provides aptamer-nucleic acid nanostructures for treating tumors in a mammal. The methods of making the compositions are also provided.Type: ApplicationFiled: October 7, 2010Publication date: July 26, 2012Applicant: Arizona Board of RegentsInventors: Yung Chang, Hao Yan
-
Patent number: 8227035Abstract: A self-replicating monolayer system employing polymerization of monomers or nanoparticle ensembles on a defined template provides a method for synthesis of two-dimensional single molecule polymers. Systems of self-replicating monolayers are used as templates for growth of inorganic colloids. A preferred embodiment employs SAM-based replication, wherein an initial monolayer is patterned and used as a template for self-assembly of a second monolayer by molecular recognition. The second monolayer is polymerized in place and the monolayers are separated to form a replicate. Both may then function as templates for monolayer assemblies. A generic self-replicating monomer unit comprises a polymerizable moiety attached by methylene repeats to a recognition element and an ending unit that will not interfere with the chosen recognition chemistry. The recognition element is self-complementary, unless a set of two replicating monomers with compatible cross-linking chemistry is employed.Type: GrantFiled: July 19, 2009Date of Patent: July 24, 2012Assignee: Massachusetts Institute of TechnologyInventors: Joseph M. Jacobson, David W. Mosley
-
Patent number: 8215074Abstract: In one embodiment, Hexagonal tiles encompassing a large are divided into three groups, each containing ? of all hexagonal tiles that are disjoined among one another. Openings for the hexagonal tiles in each group are formed in a template layer, and a set of self-assembling block copolymers is applied and patterned within each opening. This process is repeated three times to encompass all three groups, resulting in a self-aligned pattern extending over a wide area. In another embodiment, the large area is divided into rectangular tiles of two non-overlapping and complementary groups. Each rectangular area has a width less than the range of order of self-assembling block copolymers. Self-assembled self-aligned line and space structures are formed in each group in a sequential manner so that a line and space pattern is formed over a large area extending beyond the range of order.Type: GrantFiled: February 5, 2008Date of Patent: July 10, 2012Assignee: International Business Machines CorporationInventors: Charles T. Black, Timothy J. Dalton, Bruce B. Doris, Carl Radens
-
Publication number: 20120141550Abstract: System and method for loading the front line anticancer drug, doxorubicin (DOX) onto DNA-capped gold nanoparticles whose duplex DNA has been designed for specific DOX intercalation. Since each AuNP contains about 108 high affinity drug sites, this design allows for a high local DOX concentration on the particle. Drug binding was confirmed by monitoring the increase in DNA melting temperature, the shift in the plasmon resonance maximum, and the increase in the NP hydrodynamic radius as a function of [DOX]/[DNA] ratio. The feasibility of the nanoparticles as a drug delivery system was demonstrated by showing that particle-bound DOX could be transferred to a target DNA.Type: ApplicationFiled: November 1, 2011Publication date: June 7, 2012Applicant: SYRACUSE UNIVERSITYInventors: Mathew Maye, James Dabrowiak, Colleen Alexander