Via Nucleic Acid Hybridization Patents (Class 977/885)
  • Patent number: 8822184
    Abstract: Multiple properties of plasmonic assemblies are determined by their geometrical organization. This patent focuses on the formation of Janus structure of the asymmetric assembly structure of the gold nanorods and gold nanoparticles. Chiral structure of gold nanorods and gold nanoparticles can be obtained through the characterization of optical spectra of the Janus structure. And it opens the door for the explanation of the mechanism of the chirality, plays a strong guiding role in the negative refractive material above and has good application prospects.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: September 2, 2014
    Inventors: Libing Wang, Chuanlai Xu, Liguang Xu, Xiaoling Wu
  • Publication number: 20130071882
    Abstract: Multiple properties of plasmonic assemblies are determined by their geometrical organization. This patent focuses on the formation of Janus structure of the asymmetric assembly structure of the gold nanorods and gold nanoparticles. Chiral structure of gold nanorods and gold nanoparticles can be obtained through the characterization of optical spectra of the Janus structure. And it opens the door for the explanation of the mechanism of the chirality, plays a strong guiding role in the negative refractive material above and has good application prospects.
    Type: Application
    Filed: May 2, 2012
    Publication date: March 21, 2013
    Inventors: Libing WANG, Chuanlai Xu, Liguang Xu, Xiaoling Wu
  • Publication number: 20120288626
    Abstract: A self-replicating monolayer system employing polymerization of monomers or nanoparticle ensembles on a defined template provides synthesis of two-dimensional single molecule polymers. Systems of self-replicating monolayers are used as templates for growth of inorganic colloids. A preferred embodiment employs SAM-based replication, wherein an initial monolayer is patterned and used as a template for self-assembly of a second monolayer by molecular recognition. The second monolayer is polymerized in place and the monolayers are separated to form a replicate. Both may then function as templates for monolayer assemblies. A generic self-replicating monomer unit comprises a polymerizable moiety attached by methylene repeats to a recognition element and an ending unit that will not interfere with the chosen recognition chemistry. The recognition element is self-complementary, unless two replicating monomers with compatible cross-linking chemistry are employed.
    Type: Application
    Filed: July 23, 2012
    Publication date: November 15, 2012
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Joseph M. Jacobson, David W. Mosley
  • Patent number: 7887885
    Abstract: The invention provides methods of nanolithography and products therefor and produced thereby. In particular, the invention provides a nanolithographic method referred to as high force nanografting (HFN). HFN utilizes a tip (e.g., a scanning probe microscope (SPM) tip such as an atomic force microscope (AFM) tip) to pattern a substrate passivated with a resist. In the presence of a patterning compound, the tip is used to apply a high force to the substrate to remove molecules of the resist from the substrate, whereupon molecules of the patterning compound are able to attach to the substrate the form the desired pattern.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: February 15, 2011
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Peter V. Schwartz, James J. Storhoff, So-Jung Park
  • Patent number: 7842344
    Abstract: The present invention relates to the use of direct-write lithographic printing of proteins and peptides onto surfaces. In particular, the present invention relates to methods for creating protein and peptide arrays and compositions derived therefrom. Nanoscopic tips can be used to deposit the peptide or protein onto the surface to produce a pattern. The pattern can be dots or lines having dot diameter and line width of less than 1,000 nm. The tips and the substrate surfaces can be adapted for the peptide and protein lithography.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: November 30, 2010
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Jung-Hyurk Lim, David S. Ginger, Jwa-Min Nam, Ki-Bum Lee, Linette Demers, Albena Ivanisevic
  • Patent number: 7744963
    Abstract: In one aspect, a method of nanolithography is provided, the method comprising providing a substrate; providing a scanning probe microscope tip; coating the tip with a deposition compound; and subjecting said coated tip to a driving force to deliver said deposition compound to said substrate so as to produce a desired pattern. Another aspect of the invention provides a tip for use in nanolithography having an internal cavity and an aperture restricting movement of a deposition compound from the tip to the substrate. The rate and extent of movement of the deposition compound through the aperture is controlled by a driving force.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 29, 2010
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Seunghun Hong, Vinayak P. Dravid
  • Patent number: 7524534
    Abstract: The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN), which utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substrate as “ink.” Capillary transport of molecules from the SPM tip to the solid-state substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN, including submicrometer combinatorial arrays, and kits, devices and software for performing DPN. The invention further provides a method of performing AFM imaging in air.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: April 28, 2009
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Richard Piner, Seunghun Hong
  • Patent number: 7272511
    Abstract: Described herein are a molecular memory obtained using DNA strand molecular switches and carbon nanotubes, and a manufacturing method thereof. In particular, the nonvolatile memory is manufactured according to an architecture that envisages the use of carbon nanotubes as electrical connectors and DNA strands as physical means on which to write the information. In other words, the nonvolatile memory is made by means of a set of molecular DNA strand switches, the addressing of which is controlled by molecular wires made up of carbon nanotubes.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: September 18, 2007
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Luigi Occhipinti, Francesco Buonocore, Vincenzo Vinciguerra, Gianguido Rizzotto, Giuseppe Panzera, Floriana San Biagio, Francesco Italia