Liquid Phase Deposition Patents (Class 977/892)
  • Patent number: 8495969
    Abstract: Apparatus and method for producing electrically conducting nanostructures by means of electrospinning, the apparatus having at least a substrate holder (1), a spinning capillary (2), connected to a reservoir (3) for a spinning liquid (4) and to an electrical voltage supply (5), an adjustable movement unit (6, 6?) for moving the spinning capillary (2) and/or the substrate holder (1) relative to one another, an optical measuring device (7) for monitoring the spinning procedure at the outlet of the spinning capillary (2), and a computer unit (8) for controlling the drive of the spinning capillary (2) relative to the substrate holder (1) in accordance with the spinning procedure.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: July 30, 2013
    Inventors: Stefan Bahnmüller, Andreas Greiner, Joachim H. Wendorff, Roland Dersch, Jacob Belardi, Max Von Bistram, Stefanie Eiden, Stephan Michael Meier
  • Patent number: 8486348
    Abstract: A device is made by forming sacrificial fibers on a substrate mold. The fibers and mold are covered with a first material. The substrate mold is removed, and the covered fibers are then removed to form channels in the first material.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: July 16, 2013
    Assignee: Cornell University
    Inventors: Leon M. Bellan, Harold G. Craighead, Elizabeth A. Strychalski
  • Publication number: 20130175177
    Abstract: A method of forming a nano-structure (100?) involves forming a multi-layered structure (10) including an oxidizable material layer (14) established on a substrate (12), and another oxidizable material layer (16) established on the oxidizable material layer (14). The oxidizable material layer (14) is an oxidizable material having an expansion coefficient, during oxidation, that is more than 1. Anodizing the other oxidizable material layer (16) forms a porous anodic structure (16?), and anodizing the oxidizable material layer (14) forms a dense oxidized layer (14?) and nano-pillars (20) which grow through the porous anodic structure (16?) into pores (18) thereof. The porous structure (16?) is selectively removed to expose the nano-pillars (20). A surface (I) between the dense oxidized layer (14?) and a remaining portion of the oxidizable material layer (14) is anodized to consume a substantially cone-shaped portion (32) of the nano-pillars (20) to form cylindrical nano-pillars (20?).
    Type: Application
    Filed: October 21, 2010
    Publication date: July 11, 2013
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Peter Mardilovich, Qingqiao Wei, Anthony M. Fuller
  • Publication number: 20130161847
    Abstract: The present disclosure relates to an apparatus and a method for fabricating an antimicrobial hybrid material of a natural antimicrobial particle and a carbon nanomaterial, capable of fully utilizing the antimicrobial property of a natural antimicrobial material and a carbon nanomaterial by maximizing adsorption of the natural antimicrobial material on the carbon nanomaterial.
    Type: Application
    Filed: November 27, 2012
    Publication date: June 27, 2013
    Inventors: Gi Byoung HWANG, Gwi Nam BAE, Jae Hee JUNG, Seung Bok LEE, Chu Won NHO, Bo Mi KWON
  • Patent number: 8470409
    Abstract: A method of forming a nanowire structure is disclosed. The method comprises applying on a surface of carrier liquid a layer of a liquid composition which comprises a surfactant and a plurality of nanostructures each having a core and a shell, and heating at least one of the carrier liquid and the liquid composition to a temperature selected such that the nanostructures are segregated from the surfactant and assemble into a nanowire structure on the surface.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: June 25, 2013
    Assignee: Ben Gurion University of the Negev Research and Development Authority
    Inventors: Roman Volinsky, Raz Jelinek
  • Publication number: 20130157837
    Abstract: A hybrid composite of Metal Organic Frameworks (MOF) encapsulated in nanocarbon material, wherein the MOFs are grown inside or outside or both side of nano carbon morphologies of the hybrid composite. Such composites may be prepared by a. dissolving and mixing a salt of the metal and a ligand in the ratio ranging between 1:1 to 1:4 (by w/w ratio) by sonicating them to form a precursor mixture; b. adding non-functionalized or functionalized nano-carbon material to the precursor mixture of step (a); c. sonicating the mixture of step (b) followed by heating; d. keeping the slurry obtained at elevated temperature followed by centrifugation.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 20, 2013
    Applicant: COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH
    Inventor: Council of Scientific and Industrial Research
  • Patent number: 8461060
    Abstract: A semiconductor device and a method of forming it are disclosed in which at least two adjacent conductors have an air-gap insulator between them which is covered by nanoparticles of insulating material being a size which prevent the nanoparticles from substantially entering into the air-gap.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 11, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, Gurtej Sandhu, Neil Greeley, John Smythe
  • Publication number: 20130130894
    Abstract: Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (—COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.
    Type: Application
    Filed: January 14, 2013
    Publication date: May 23, 2013
    Applicant: Babcock & Wilcox Technical Services Y-12, LLc
    Inventor: Babcock & Wilcox Technical Services Y-12, LLc
  • Publication number: 20130122369
    Abstract: A negative active material for a rechargeable lithium battery and a rechargeable lithium battery including the same. The negative active material includes a carbon-nanoparticle composite including a crystalline carbon material including pores, and amorphous nanoparticles dispersed either inside the pores, or on the surface of the crystalline carbon material, or both inside the pores and on the surface of the crystalline carbon material. At least one of the amorphous nanoparticles includes a metal oxide layer in a form of a film on the surface, and the amorphous nanoparticles have a full width at half maximum of about 0.35 degree (°) or greater at a crystal plane producing the highest peak as measured by X-ray diffraction analysis.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 16, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventor: Samsung SDI Co., Ltd.
  • Patent number: 8440480
    Abstract: A nanocrystal electroluminescence device comprising a polymer hole transport layer, a nanocrystal light-emitting layer and an organic electron transport layer wherein the nanocrystal light-emitting layer is independently and separately formed between the polymer hole transport layer and the organic electron transport layer. According to the nanocrystal electroluminescence device, since the hole transport layer, the nanocrystal light-emitting layer and the electron transport layer are completely separated from one another, the electroluminescence device provides a pure nanocrystal luminescence spectrum having limited luminescence from other organic layers and substantially no influence by operational conditions, such as voltage. Further included is a method for fabricating the nanocrystal electroluminescence device.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: May 14, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Shin Ae Jun, Sung Hun Lee, Tae Kyung Ahn, Seong Jae Choi
  • Publication number: 20130115516
    Abstract: Highly dispersed lithium titanate crystal structures having a thickness of few atomic layers level and the two-dimensional surface in a plate form are supported on carbon nanofiber (CNF). The lithium titanate crystal structure precursors and CNF that supports these are prepared by a mechanochemical reaction that applies sheer stress and centrifugal force to a reactant in a rotating reactor. The mass ratio between the lithium titanate crystal structure and carbon nanofiber is preferably between 75:25 and 85:15. The carbon nanofiber preferably has an external diameter of 10-30 nm and an external specific surface area of 150-350 cm2/g. This composite is mixed with a binder and then molded to obtain an electrode, and this electrode is employed for an electrochemical element.
    Type: Application
    Filed: May 2, 2011
    Publication date: May 9, 2013
    Inventors: Katsuhiko Naoi, Wako Naoi, Shuichi Ishimoto, Kenji Tamamitsu
  • Publication number: 20130115455
    Abstract: The present invention provides seeded rod (SR) nanostructure systems including an elongated structure embedded with a seed structure being a core/shell structure or a single-material rod element. The SR systems disclosed herein are suitable for use in a variety of electronic and optical devices.
    Type: Application
    Filed: September 15, 2011
    Publication date: May 9, 2013
    Applicant: YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIV. OF JERUSALEM LTD.
    Inventors: Uri Banin, Adiel Zimran, Itai Lieberman, Amit Sitt
  • Publication number: 20130115172
    Abstract: The present invention relates to a nanophosphor and method for synthesizing the same, and provides a nanophosphor containing fluoride-based nanoparticles co-doped with Yb3+ and Er3+ expressed by the following Chemical Formula 1, NaY1?w?z?x?yGdwLzF4:Yb3+x,Er3+y??(1) wherein, the description of the values x, y, w, z, and L is the same as defined above. The nanophosphor may exhibit an excellent luminous intensity despite having a small particle size, and be excited by infrared rays to emit visible light, and have magnetic properties and thus can be used as a contrast agent, a counterfeit prevention code, and the like.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 9, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventor: Korea Institute of Science and Technology
  • Publication number: 20130105328
    Abstract: Glucose and ATP biosensors have important applications in diagnostics and research. Combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. This disclosure illustrates the use of single-stranded DNA (ssDNA) to modify SWCNTs to increase SWCNT solubility in water. Multiple embodiments with this configuration allows for exploration of new schemes of combining ssDNASWCNT and Pt black in aqueous media systems. These embodiments resulted in a nanocomposite with enhanced biosensor performance. The ssDNA-SWCNT/Pt black nanocomposite constructed by a layered scheme proved most effective in terms of biosensor activity. The key feature of this structure and method of use is the exploitation of ssDNASWCNTs as molecular templates for Pt black electrodeposition. Glucose and ATP microbiosensors fabricated utilizing this structure and method of use exhibited high sensitivity, wide linear range and low limit of detection.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 2, 2013
    Applicant: Purdue Research Foundation
    Inventors: Tae-Gon Cha, Jong Hyun Choi, Jonathan C. Claussen, Alfred R. Diggs, Jin Shi
  • Publication number: 20130102084
    Abstract: Methods of forming graphene by graphite exfoliation, wherein the methods include: providing a graphite sample having atomic layers of carbon; introducing a salt and a solvent into the space between the atomic layers; expanding the space between the atomic layers using organic molecules and ions from the solvent and the salt; and separating the atomic layers using a driving force to form one or more sheets of graphene; the graphene produced by the methods can be used to form solar cells, to perform DNA analysis, and for other electrical, optical and biological applications.
    Type: Application
    Filed: June 24, 2011
    Publication date: April 25, 2013
    Applicant: Univeristy
    Inventors: Kian Ping Loh, Junzhong b
  • Publication number: 20130101651
    Abstract: A method of producing a dried formulation for an active substance such as a drug compound is described. The method involves dispersing a discontinuous phase (e.g. an oil-based or lipidic medium) comprising the active substance into a continuous phase (e.g. water) so as to form a two-phase liquid system comprising droplets of said discontinuous phase, allowing nanoparticles to congregate at the phase interface at the surface of the droplets such that at least one layer of nanoparticles coat the droplets and thereby provide sufficient structural integrity to the droplets to enable the subsequent removal of the continuous phase, and thereafter removing the continuous phase from the nanoparticle-coated droplets to produce a dried formulation.
    Type: Application
    Filed: October 17, 2012
    Publication date: April 25, 2013
    Applicant: University of South Australia
    Inventor: University of South Australia
  • Publication number: 20130095998
    Abstract: The present invention relates to a method for producing a tungsten oxide photocatalyst having titanium oxide and copper ion supported thereon, comprising dissolving urea in a solution in which copper-ion supporting tungsten oxide particles are uniformly dispersed in a titanium oxide sol, thermally decomposing the urea to thereby allow the titanium oxide to precipitate on the surface of copper ion-supporting tungsten oxide and to be supported thereon; and a tungsten oxide photocatalyst modified by both titanium oxide and copper ion obtained by the method, wherein the rate of change of diffuse reflectivity (at wavelength of 700 nm) is less than 3% before and after the irradiation of ultraviolet and the titanium oxide is supported on the tungsten oxide in an island shape of 1 to 100 nm in size. The tungsten oxide photocatalyst having titanium oxide and copper ion supported thereon of the present invention exhibits high catalyst activity under visible light irradiation.
    Type: Application
    Filed: May 23, 2012
    Publication date: April 18, 2013
    Applicant: SHOWA DENKO K.K.
    Inventors: Yasuhiro Hosogi, Yasushi Kuroda
  • Publication number: 20130092545
    Abstract: The present invention refers to a method of manufacturing layered metal oxide particles, the method comprising: placing a metal electrode in an electrolyte; and applying an electrical voltage to the electrode, wherein the metal electrode forms the anode, to form a metal oxide layer on the electrode surface, wherein the electrical voltage applied is higher than the breakdown voltage of the metal oxide, thereby breaking down the metal oxide layer formed on the electrode surface into metal oxide particles that react with the electrolyte to form the layered metal oxide particles. The present invention also refers to a layered metal oxide particle obtained from the method, and a method of manufacturing a crystalline metal oxide nanosheet or a crystalline metal oxide nanoribbon.
    Type: Application
    Filed: March 8, 2011
    Publication date: April 18, 2013
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Yuxin Tang, Zhili Dong, Zhong Chen
  • Publication number: 20130089812
    Abstract: A catalyst for use in at the anode of direct methanol fuel cells is made from nanoparticles having a core-shell structure. The core is an alloy of platinum and gold. The core is surrounded by a first shell of ruthenium and a second shell containing a ternary alloy of platinum, gold, and ruthenium. The catalyst can be made by a reverse-micelle method or by a single-phase scalable method. The catalyst is highly stable under conditions of use and resists dissolution of ruthenium or platinum.
    Type: Application
    Filed: June 17, 2011
    Publication date: April 11, 2013
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Sanjeev Mukerjee, Qinggang He, Nagappan Ramaswamy
  • Patent number: 8413603
    Abstract: Nanofibers are formed using electrospray deposition from microfluidic source. The source is brought close to a surface, and scanned in one embodiment to form oriented or patterned fibers. In one embodiment, the surface has features, such as trenches on a silicon wafer. In further embodiments, the surface is rotated to form patterned nanofibers, such as polymer nanofibers. The nanofibers may be used as a mask to create features, and as a sacrificial layer to create nanochannels.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: April 9, 2013
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Harold G. Craighead, Jun Kameoka
  • Publication number: 20130079216
    Abstract: A metal catalyst is formed by vaporizing a quantity of metal and a quantity of carrier forming a vapor cloud. The vapor cloud is quenched forming precipitate nanoparticles comprising a portion of metal and a portion of carrier. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming metal catalysts comprises means for vaporizing a quantity of metals and a quantity of carrier, quenching the resulting vapor cloud and forming precipitate nanoparticles comprising a portion of metals and a portion of carrier. The system further comprises means for impregnating supports with the nanoparticles.
    Type: Application
    Filed: November 19, 2012
    Publication date: March 28, 2013
    Applicant: SDCmaterials, Inc.
    Inventor: SDCmaterials, Inc.
  • Publication number: 20130075671
    Abstract: A method for forming a polyimide-carbon nanotube composite film on a substrate is provided. The method comprises: suspending carbon nanotubes in a solution comprising a poly(amic acid) and a suitable solvent; casting the solution onto a substrate to form a layer on the substrate; and heating the layer to convert the poly(amic acid) into a polyimide to form the polyimide-carbon nanotube composite film. A polyimide-carbon nanotube composite film and an electronic device comprising the polyimide-carbon nanotube composite film are also provided.
    Type: Application
    Filed: September 21, 2012
    Publication date: March 28, 2013
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventor: Nanyang Technological University
  • Publication number: 20130059074
    Abstract: A method of making a nanostructure-reinforced composite comprises providing matrix particles in a reactor; fluidizing the matrix particles; introducing a nanostructure material into the reactor; homogeneously dispersing the nanostructure material; uniformly depositing the nanostructure material on the matrix particles to form a composite powder; generating a nanostructure on the matrix particles from the nanostructure material; and processing the composite powder to form the nanostructure-reinforced composite having a matrix formed from the matrix particles. The nanostructures are evenly distributed in the matrix of the nanostructure-reinforced composite.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 7, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Zhiyue Xu, Gaurav Agrawal
  • Publication number: 20130045361
    Abstract: The present invention relates to a method the synthesis and utilization of random, cross-linked, substituted polystyrene copolymers as polymeric cross-linked surface treatments (PXSTs) to control the orientation of physical features of a block copolymer deposited over the first copolymer. Such methods have many uses including multiple applications in the semi-conductor industry including production of templates for nanoimprint lithography.
    Type: Application
    Filed: March 17, 2011
    Publication date: February 21, 2013
    Inventors: C. Grant Willson, Christopher M. Bates, Jeffrey Strahan, Christopher John Ellison
  • Publication number: 20130045857
    Abstract: The present invention relates to a composite of a porous substrate and one-dimensional nanomaterial, which is manufactured by a hydrothermal method. The method for manufacturing the composite of the present invention is simple and low-cost, and the one-dimensional nanomaterial is homogeneously distributed on the porous substrate with tight binding at the interface. The present invention also relates to a surface-modified composite and a method for preparing the same. The composite of the present invention which is hydrophobically modified at the surface can adsorb organic solvents such as toluene, dichlorobenzene, petroleum ether and the like, and greases such as gasoline, lubricating oil, motor oil, crude oil and the like, with a weight adsorption ratio of >10.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 21, 2013
    Inventors: Chunsing LEE, Shuittong LEE, Yongbing TANG, Mankeung FUNG, Chiuyee CHAN
  • Patent number: 8372295
    Abstract: Methods for fabricating sublithographic, nanoscale arrays of openings and linear microchannels utilizing self-assembling block copolymers, and films and devices formed from these methods are provided. Embodiments of the invention use a self-templating or multilayer approach to induce ordering of a self-assembling block copolymer film to an underlying base film to produce a multilayered film having an ordered array of nanostructures that can be removed to provide openings in the film which, in some embodiments, can be used as a template or mask to etch openings in an underlying material layer.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: February 12, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Dan B. Millward
  • Publication number: 20130029835
    Abstract: There is provided a catalyst comprising metal nanoparticles supported on nanocrystalline cellulose and a homogeneous catalyst system comprising this catalyst colloidally suspended in a fluid. There is also provided a method of producing this catalyst and various uses thereof.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 31, 2013
    Applicant: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: Audrey MOORES, Ciprian M. CIRTIU, Madhu KAUSHIK, Charles BENOIT
  • Publication number: 20130029920
    Abstract: A metal nanoparticle-phosphopeptide complex comprising a metal nanoparticle and a phosphopeptide is provided. The phosphopeptide comprises two or more contiguous peptide motifs and two or more phosphorus-containing groups capable of interacting with the surface of the metal nanoparticle. The amino acids at the equivalent position in each peptide motif have similar structural and/or electronic properties. Each phosphorus-containing group is bound to an amino acid in the two or more contiguous peptide motifs. Methods for preparing the metal nanoparticle-phosphopeptide complex are also provided.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 31, 2013
    Inventors: Margaret A. Brimble, Stefanie Papst, Raoul Peltier, Richard D. Tilley, David E. Williams
  • Publication number: 20130011659
    Abstract: A method for forming a protective coat upon an article includes forming a liquid coating mixture comprising a cross-linking agent and a polymer dissolved within a solvent; applying a first coat of the coating mixture upon the article; evaporating the solvent from the first coat; and cross-linking the article. Also disclosed is a device containing an exterior surface at least partially covered by a coating comprising a cross-linked polymer and a filler material that is selected from the group consisting of a fullerene, a micro-encapsulated material, and a combination of two or more thereof.
    Type: Application
    Filed: July 7, 2011
    Publication date: January 10, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Gabriela Wiese, Hendrik John, Sven van Delden, Jan Tomczak
  • Publication number: 20130009825
    Abstract: Methods involve a combination of polyelectrolyte multilayer (PEM) coating or silane self assembly on a substrate; microcontact printing; and conductive graphite particles, especially size controlled highly conductive exfoliated graphite nanoplatelets. The conductive graphite particles are coated with a charged polymer such as sulfonated polystyrene. The graphite particles are patterned using microcontact printing and intact pattern transfer on a substrate that has an oppositely-charged surface. The method allows for conductive organic patterning on both flat and curved surfaces and can be used in microelectronic device fabrication.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Ilsoon LEE, Lawrence T. DRZAL, Jue LU, Troy R. HENDRICKS
  • Publication number: 20130000958
    Abstract: Disclosed herein are a multilayer ceramic substrate and a method for manufacturing the same. In a method for manufacturing the multilayer ceramic substrate, which has a ceramic laminate including multiple ceramic layers and allowing interconnection between layers through vias respectively formed in the multiple ceramic layers, the method includes: preparing a ceramic laminate in which a void is formed around a via in at least one ceramic layer of multiple ceramic layers; immersing the ceramic laminate in a precipitating bath in which an electrode solution is contained; putting the ceramic laminate out of the precipitating bath after a predetermined period of time, and then removing a nanoparticle film stacked on a surface of a multilayer ceramic substrate; and applying heat to the multilayer ceramic substrate to form nanoparticles filling an inside of the void, after the removing of the nanoparticle film.
    Type: Application
    Filed: May 16, 2012
    Publication date: January 3, 2013
    Inventors: Yong Seok CHOI, Dae Hyeong Lee, Won Chul Ma, Ki Pyo Hong
  • Publication number: 20130005143
    Abstract: A semiconductor device and a method of forming it are disclosed in which at least two adjacent conductors have an air-gap insulator between them which is covered by nanoparticles of insulating material being a size which prevent the nanoparticles from substantially entering into the air-gap.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 3, 2013
    Inventors: Nishant Sinha, Gurtej Sandhu, Neil Greeley, John Smythe
  • Publication number: 20120329935
    Abstract: A metal nanoparticle composite is provided, in which a matrix resin layer and metal nanoparticles are immobilized on the matrix resin layer. The metal nanoparticle composite has the following characteristics: a) the metal nanoparticles are obtained by heat-reducing metal ions or metal salts contained in the matrix resin layer or a precursor resin layer thereof; b) the metal nanoparticles exist within a region from the surface of the matrix resin layer to a depth of at least 50 nm; c) particle diameters of the metal nanoparticles are in the range of 1 nm to 100 nm with the mean particle diameter of greater than and equal to 3 nm; and d) a spacing between adjacent metal nanoparticles is greater than and equal to the particle diameter of a larger one of the adjacent metal nanoparticles.
    Type: Application
    Filed: February 8, 2011
    Publication date: December 27, 2012
    Applicant: NIPPON STEEL CHEMICAL CO., LTD.
    Inventors: Yasufumi Matsumura, Ryuzo Shinta, Yasushi Enomoto
  • Publication number: 20120329636
    Abstract: The present invention relates to a belt-shaped metal nanostructure in which a wide surface area of catalytically active material can be realized even by a relatively small amount thereof so that it shows an excellent catalytic activity, and a method for preparing same. The belt-shaped metal nanostructure comprises a metal nanobelt containing the first metal and a conductive polymer, in the shape of a belt having a nanoscale thickness, a width larger than the thickness and a length larger than the width; and the second metal coupled to one or both planes of the metal nanobelt defined by said width and length.
    Type: Application
    Filed: March 10, 2011
    Publication date: December 27, 2012
    Applicant: LG CHEM, LTD.
    Inventors: Won-Jong Kwon, Gyo-Hyun Hwang, Sang-Uck Lee, Hyuk Kim, Jung-Won Park, Sung-Ho Yoon, Kyung-Hoon Lee
  • Publication number: 20120318729
    Abstract: One aspect of the invention relates to customized thin-film composite membranes comprising: a porous support; a selective barrier; and one or more polymeric additives dispersed in the porous support in an amount from at least about 1% and about 50% by weight of the porous support. Another aspect of the invention relates to a method of fabricating a porous support comprising the steps of: preparing a polymer solution comprising a polymer, a polymeric additive, and a first liquid; contacting a surface with the polymer solution; and evaporating the liquid. Another aspect of the invention relates to the use of the thin-film composite membranes disclosed herein in osmotically driven membrane processes.
    Type: Application
    Filed: December 3, 2010
    Publication date: December 20, 2012
    Applicant: Yale University Office of Cooperative Research
    Inventors: Ngai Yin Yip, William Anthony Phillip, Jessica Deborah Schiffman, Menachem Elimelech
  • Patent number: 8317978
    Abstract: A method of fabricating a non-brittle, carbon nanopaper from single wall, multiwall, and combination thereof, from carbon nanotubes, using a vacuum deposition, high temperature annealing, and polystyrene polymer rinse process; which nanopaper can be nitrided by either a plasma-enhanced chemical vapor deposition (PECVD) process, or an by an electrochemical method, to obtain a useful chemically functionalized substrate, a substrate containing metastable N4, N8, and longer chain polymeric nitrogen clusters. Such nitrided carbon nanopaper can be used to enhance the ballistic performance of gun propellants, while reducing gun barrel wear and erosion thereof.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: November 27, 2012
    Inventors: Thelma G. Manning, Zafar Iqbal
  • Publication number: 20120295032
    Abstract: The present invention relates to a coating composition containing a colored aluminum pigment and a titanium oxide pigment, wherein in the case where a coating film formed from the coating composition is illuminated at 45 degrees with respect to the surface of the coating film, a ratio of lightness L* of light observed at 45 degrees with respect to specularly reflected light, relative to lightness L* of light observed at 110 degrees with respect to specularly reflected light is within a range of 1.00 to 1.50. The invention further relates to a method for forming a coating film, including steps of applying the above-described coating composition to a substrate; and further applying a clear coating composition thereto.
    Type: Application
    Filed: January 13, 2011
    Publication date: November 22, 2012
    Inventors: Hiroshi Shimizu, Norio Fujita
  • Publication number: 20120288697
    Abstract: Methods for coating wires to apply a silver cladding are disclosed herein. Silver nanoparticles are dispersed in a low surface tension solvent to form a coating solution. A wire is drawn through the coating solution to form a coating layer of silver nanoparticles on the wire. The coating layer is then annealed to form the wire with a silver cladding thereon.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 15, 2012
    Applicant: XEROX CORPORATION
    Inventors: Yiliang Wu, Ping Liu, Nan-Xing Hu
  • Publication number: 20120282132
    Abstract: Methods of the invention allow rapid production of high-porous, large-surface-area nanostructured metal and/or metal oxide at attractive low cost applicable to a wide variety of commercial applications such as sensors, catalysts and photovoltaics.
    Type: Application
    Filed: July 13, 2010
    Publication date: November 8, 2012
    Inventors: James J. Watkins, Christos Fotios Karanikas, David Reisner, Xinqing Ma, Jeff Roth, T. Danny Xiao, Stephen Paul Murphy
  • Publication number: 20120276369
    Abstract: Protective coatings are formed on a reflective surface of a substrate by depositing an aqueous coating composition including dispersed silica-containing nanoparticles; and removing at least a portion of the aqueous phase. In some embodiments, the aqueous coating composition includes an acid having a pKa of <3.5 in an amount effective to produce a pH of less than 5. In other embodiments, the aqueous coating composition includes at least one dispersed (co)polymer, which in some embodiments, forms core-shell particle having a dispersed (co)polymer core surrounded by a shell consisting essentially of silica nanoparticles. In some of these embodiments, the pH is at least 5. Also described are methods of making and using the coating compositions to impart soil and stain accumulation resistance and easy cleaning characteristics to light reflective substrates such as construction articles (e.g., roofing materials), light reflective surfaces (e.g. reflective films) and light transmissive surfaces (e.g.
    Type: Application
    Filed: November 16, 2010
    Publication date: November 1, 2012
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Naiyong Jing, Feng Bai
  • Publication number: 20120266770
    Abstract: A method of forming a device on a substrate comprising creating a depository and at least one attached capillary; the depository being of millimeter scale; providing a liquid containing particles in the range 1 nanometer to 1 millimeter; depositing into the depository the liquid containing particles which flows into at least one capillary by capillary action; evaporating the liquid such that the particles form an agglomerate beginning at the end of the at least one capillary with a substantially uniform distribution of the particles within the agglomerate; which is used to form a device. A microelectronic integrated circuit device comprising a substrate; a depository coupled to said substrate, the depository being formed by at least one wall adjacent to the substrate; at least one capillary channel coupled to at least one depository that is formed by walls adapted to be filled with a liquid (by capillary action) comprising nanoparticles.
    Type: Application
    Filed: May 18, 2012
    Publication date: October 25, 2012
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Gabriel L. Smith, Sarah Bedair
  • Publication number: 20120269896
    Abstract: The present invention relates to a magnetic particle-containing water dispersion wherein the magnetic particles have a primary particle diameter of 5 to 15 nm and an average secondary particle diameter of 10 to 60 nm, and the water dispersion has a zeta potential of not more than ?20 mV when a pH value of the water dispersion lies within the range of 6 to 8, and further a surface of the respective magnetic particles is coated with a carboxyl group-containing polymer. The magnetic particle-containing water dispersion is produced by heating an aqueous solution in which the carboxyl group-containing polymer is dissolved, to a temperature of 90 to 100° C.
    Type: Application
    Filed: November 18, 2010
    Publication date: October 25, 2012
    Inventors: Toshiyuki Hakata, Tomoko Okita
  • Patent number: 8287771
    Abstract: Provided is a method for producing a silver particle powder excellent in the dispersibility in a liquid organic medium having a low polarity, which comprises reducing a silver compound in an alcohol having a boiling point of from 80° C. to 200° C. or in a polyol having a boiling point of from 150 to 300° C., at a temperature of from 80° C. to 200° C. under reflux while maintaining the stream having a Reynolds number of not more than 3.70×104. The stream having a Reynolds number of not more than 3.70×104 can be maintained by stirring with a stirring power of not more than 5.68×108 W. According to the method, a silver particle powder having good low-temperature sinterability and good dispersibility and suitable for use for microwiring formation can be obtained at a high yield.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: October 16, 2012
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Kimitaka Sato, Yutaka Hisaeda
  • Publication number: 20120256166
    Abstract: The invention relates to a process for deposition of elongated nanoparticles from a liquid carrier onto a substrate, and to electronic devices prepared by this process.
    Type: Application
    Filed: November 16, 2010
    Publication date: October 11, 2012
    Applicant: MERCK PATENT GESELLSCHAFT MIT BESCHRANKTER HAFTUNG
    Inventors: Lichun Chen, Michael Coelle, Mark John Goulding
  • Publication number: 20120258292
    Abstract: Described are methods and devices for forming patterned lipid multilayer structures on a substrate using a topographically structured stamp and a topographically structured brush.
    Type: Application
    Filed: March 12, 2012
    Publication date: October 11, 2012
    Applicant: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Steven Lenhert, Omkar A. Nafday, Troy W. Lowry
  • Publication number: 20120251706
    Abstract: A method of manufacturing the anti-fingerprint paint is described hereinafter. Firstly, blend fluorinated polymer with fluorocarbon solvents to form fluorocarbon polymer paint. Secondly, blend nano-particles with the fluorocarbon solvents, then add the fluorine-couplant into the fluorocarbon solvents with the nano-particles therein, and further mix up the above-mentioned solvents to get a nano-particle solvent. Lastly, blend the fluorocarbon polymer paint with the nano-particle solvents and further mix up the mixture of the fluorocarbon polymer paint and the nano-particle solvents under a room temperature for 12 to 24 hours to form the anti-fingerprint paint. The method of forming the anti-fingerprint coating onto the surface of the substrate is described hereinafter. Firstly, coat the anti-fingerprint paint onto a surface of the substrate. Secondly, heat the anti-fingerprint paint coated on the surface of the substrate to form the anti-fingerprint coating on the surface of the substrate.
    Type: Application
    Filed: March 28, 2011
    Publication date: October 4, 2012
    Inventor: Chih-Hao Huang
  • Publication number: 20120252662
    Abstract: The invention relates to nitrogen-doped carbon nanotubes (NCNT), the surface of which is charged with metal nanoparticles, and to a method for the production thereof and use thereof as a catalyst.
    Type: Application
    Filed: December 14, 2010
    Publication date: October 4, 2012
    Applicant: BAYER INTELLECTUAL PROPERTY GMBH
    Inventors: Jens Assmann, Aurel Wolf, Leslaw Mleczko, Oliver Felix-Karl Schlueter
  • Publication number: 20120245019
    Abstract: An apparatus and method for the synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus is comprised of a three-electrode cell which includes a cell body electrode, a reference electrode, and a counter electrode. A slurry containing non-noble metal ions and a plurality of particles is introduced into the apparatus. During operation an electrical potential is applied and the slurry is stirred. When particles in the slurry collide with the electrically conductive region of the cell body electrode the transferred charge facilitates deposition of an adlayer of the desired metal. In this manner film growth can commence on a large number of particles simultaneously. After the non-noble metal ions are deposited onto the particles, they are displaced by noble-metal ions by galvanic displacement. This process is especially suitable for forming catalytically active layers on nanoparticles for use in energy conversion devices.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 27, 2012
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Radoslav Adzic, Junliang Zhang, Kotaro Sasaki
  • Patent number: 8273669
    Abstract: A method for forming a passivated densified nanoparticle thin film on a substrate in a chamber is disclosed. The method includes depositing a nanoparticle ink on a first region on the substrate, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 400° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed. The method further includes flowing an oxidizer gas into the chamber; and heating the porous compact to a second temperature between about 600° C. and about 1000° C., and for a second time period of between about 5 seconds and about 1 hour; wherein the passivated densified nanoparticle thin film is formed.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: September 25, 2012
    Assignee: Innovalight, Inc.
    Inventors: Dmitry Poplavskyy, Maxim Kelman, Mason Terry
  • Patent number: H2275
    Abstract: A method of forming a film of carbon nanotubes on a substrate includes deposition a solution of electrically charged carbon nanotubes on the surface of a substrate, adsorption of the electrically charged carbon nanotubes onto a surface the substrate of opposite electrical charge through dip coating, using a material with a surface electrical charge opposite to that of the electrically charged carbon nanotubes, and formation of a film of carbon nanotubes on the substrate, wherein the film comprises a plurality of electrically charged nanotubes extending in varying orientations but parallel to a facing surface of the substrate.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: June 4, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventor: Timothy P. Burgin