Abstract: A method for expanding human corneal endothelial cells includes: (a) providing an amniotic membrane with or without amniotic cells, wherein the amniotic membrane has an extracellular matrix; (b) placing onto the amniotic membrane, a sheet of endothelial layer, or a cell suspension including human corneal endothelial stem cells; and (c) culturing the corneal endothelial cells on the amniotic membrane for a duration sufficient for the corneal endothelial stem cells to expand to an appropriate area. The invention also relates to a method for creating a surgical graft for a recipient site of a patient using the method for expanding human corneal endothelial cells, and the surgical graft prepared therefrom.
Abstract: The present invention relates to improved therapies for the treatment of heart disease, particularly the improved delivery of therapeutic agents to heart tissue by direct infusion into the coronary circulation. A preferred embodiment of the invention is a method comprising, identifying a mammal in need of treatment or prevention of heart disease, and supplying NO to the coronary circulation prior to, and/or during the infusion of a therapeutic polynucleotide into a blood vessel of the coronary circulation in vivo.
Abstract: The invention provides compositions comprising modified stem cells containing a transgene that affects the expression of at least one gene that inhibits or promotes cardiomyogenesis. In particular, the invention discloses compositions comprising cardiac stem cells, wherein said cardiac stem cells comprise a transgene encoding a microRNA. The compositions of the invention find use in the treatment of cardiovascular disorders, such as myocardial infarction. Methods of repairing damaged myocardium in a subject using the modified stem cells are also disclosed.
Type:
Grant
Filed:
June 4, 2012
Date of Patent:
July 30, 2013
Assignee:
New York Medical College
Inventors:
Toru Hosoda, Piero Anversa, Annarosa Leri, Jan Kajstura
Abstract: The invention provides methods for depleting extraneous phenotypes from a mixed population of cells comprising the in vitro differentiated progeny of primate pluripotent stem cells. The invention also provides mixed cell populations enriched for a target cell phenotype where the mixed cell population comprises the differentiated in vitro progeny of primate embryonic stem cells.
Type:
Grant
Filed:
June 25, 2010
Date of Patent:
December 4, 2012
Assignee:
Geron Corporation
Inventors:
Jane S. Lebkowski, Catherine A. Priest, Ross M. Okamura
Abstract: The present invention relates to improved therapies for the treatment of heart disease, particularly the improved delivery of therapeutic agents to heart tissue by direct infusion into the coronary circulation. A preferred embodiment of the invention is a method of treating or preventing a cardiovascular disease by transfecting cardiac cells of a large mammal, the method comprising, identifying a mammal in need of treatment or prevention of heart disease, supplying NO to the coronary circulation prior to, and/or during the infusion of a therapeutic polynucleotide into a blood vessel of the coronary circulation in vivo, where the therapeutic polynucleotide is infused into the blood vessel over a period of at least about three minutes, where the coronary circulation is not isolated or substantially isolated from the systemic circulation of the mammal; and where the therapeutic polynucleotide transfects cardiac cells of the animal resulting in the treatment or prevention of the heart disease.
Abstract: The invention provides compositions comprising modified stem cells containing a transgene that affects the expression of at least one gene that inhibits or promotes cardiomyogenesis. In particular, the invention discloses compositions comprising cardiac stem cells, wherein said cardiac stem cells comprise a transgene encoding a microRNA. The compositions of the invention find use in the treatment of cardiovascular disorders, such as myocardial infarction. Methods of repairing damaged myocardium in a subject using the modified stem cells are also disclosed.
Type:
Grant
Filed:
June 9, 2009
Date of Patent:
June 5, 2012
Assignee:
New York Medical College
Inventors:
Toru Hosoda, Piero Anversa, Annarosa Leri, Jan Kajstura