Including Dna Logic Element Patents (Class 977/941)
  • Publication number: 20150131134
    Abstract: An optical logic gate includes: a DNA based nanostructure including DNA and metal nanoparticles coupled to the DNA, the DNA based nanostructure being configured to rotate a polarization plane of an incident light; a polarizer to which light passing through the DNA based nanostructure is incident, the polarizer being configured to extract a component in a direction of a predetermined reference axis from light whose polarization plane is rotated by the DNA based nanostructure; and a detection unit to which light passing through the polarizer is incident, the detection unit being configured to generate a logic signal based on a result obtained by comparing the intensity of the component in the reference axis direction extracted by the polarizer with a predetermined threshold value.
    Type: Application
    Filed: February 20, 2014
    Publication date: May 14, 2015
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Chulki KIM, Jae Hun KIM, Byeong Ho PARK, Seok LEE, Seong Chan JUN, Taikjin LEE
  • Patent number: 8703276
    Abstract: Nanostructures on substrates include one or more nanofeatures having unscathed walls and width dimensions of forty-five nm or less. The nanofeatures may include at least one of a nanotrench, nanocapillary, nano-chemical pattern, and nanowire. The nanostructures may include a nano object with a pattern of nano elements. A nano system may include at least one nano system device, which may include at least one nanofeature. A method of forming nanofeatures on substrates includes placing a nano-templating element on the substrate. A masking material is deposited at an acute angle to form shadow gaps on shadowed regions of the substrate. The nano-templating element, the angle, and other factors may be selected to form shadow gaps having width dimensions less than 10 nm. The substrate may be chemically modified in the areas corresponding to the shadow gaps to create nanofeatures with unscathed walls having width dimensions of less than 10 nm.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: April 22, 2014
    Assignee: Brigham Young University
    Inventors: Héctor Alejandro Becerril García, Adam T. Woolley
  • Patent number: 8183648
    Abstract: The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: May 22, 2012
    Assignee: UT-Battelle, LLC
    Inventors: Predrag S. Krstic, Vincent Meunier
  • Patent number: 8110353
    Abstract: A catalytic system and method of catalyzing reactions that uses a novel toehold exchange mechanism that allows a specified input to catalyze the release of a specified output, which in turn can serve as a catalyst for other reactions is provided. This toehold exchange catalyst system, which can be driven forward by the configurational entropy of the released molecule, provides an amplifying circuit element that is simple, fast, modular, composable, and robust. Using this toehold exchange catalyst system it has been possible to construct and characterize several circuits that amplify nucleic acid signals, including a feed-forward cascade with quadratic kinetics and a positive feedback circuit with exponential growth kinetics.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: February 7, 2012
    Assignee: California Institute of Technology
    Inventors: David Zhang, Andrew J. Turberfield, Erik Winfree