Abstract: There is provided a master for micro flow path creation, a transfer copy, and a method for producing a master for micro flow path creation by which transfer copies having an area with high hydrophilicity can be easily mass-produced, the master for micro flow path creation including: a base material; a main concave-convex portion provided on a surface of the base material and extending in a planar direction of the base material; and a fine concave-convex portion provided on a surface of the main concave-convex portion and having a narrower pitch than the main concave-convex portion. The fine concave-convex portion has an arithmetic average roughness of 10 nm to 150 nm and has a specific surface area ratio of 1.1 to 3.0.
Abstract: Provided are methods of analyzing capped ribonucleic acids (RNAs). The methods include translocating an adapted RNA through a nanopore of a nanopore device. The adapted RNA includes an RNA region, a 5? cap, and an adapter polynucleotide attached to the 5? cap. The methods include monitoring ionic current through the nanopore during the translocating, translocating the 5? cap through the nanopore, and identifying one or more ionic current features characteristic of the 5? cap (e.g., a triphosphate linkage between the 5? cap and nucleotide N1 of the RNA region, a 5? to 5? orientation of the 5? cap and nucleotide N1 of the RNA region, and/or the like), translocating through the nanopore. Also provided are computer-readable media, computer devices, and systems that find use, e.g., in practicing the methods of the present disclosure.
Type:
Grant
Filed:
May 22, 2019
Date of Patent:
January 14, 2025
Assignee:
The Regents of the University of California
Inventors:
Logan Mulroney, Mark Akeson, Miten Jain, Hugh Olsen
Abstract: A method of treating cancer is disclosed. The method involves applying one or more direct current electric fields (DC-EFs) to a subject and administering to the subject an additional treatment selected from the group consisting of radiation, an effective amount of one or more chemotherapy agents, SapC-DOPS, anti-phosphatidylserine targeted drugs, and combinations thereof.
Type:
Grant
Filed:
October 15, 2020
Date of Patent:
December 24, 2024
Assignee:
University of Cincinnati
Inventors:
Xiaoyang Qi, Ahmet Kaynak, Daria Narmoneva, Andrei Kogan
Abstract: The invention relates to a method to form copper nanoparticles. The method comprises heating a solution comprising a copper precursor comprising at least one neat copper carboxylate in a concentration of at least 0.2 M, a stabilizer comprising an amine in a concentration equal or larger than the concentration of the copper precursor and optionally a solvent to a temperature T1 to form metallic copper. The solution is then heated to a temperature T2, with the temperature T2 being at least 10° C. higher than the temperature T1. The solution is heated from temperature T1 to temperature T2 with an average rate of at least 2 degrees per minute. The invention further relates to copper nanoparticles obtainable by such method and to formulations comprising such nanoparticles.
Abstract: The present disclosure relates to a thermosetting resin composite having a specific thermal stress factor, and capable of implementing a low glass transition temperature, low modulus, and a low coefficient of thermal expansion, and minimizing warpage, and having excellent flowability in a prepreg or semi-cured state, and a metal clad laminate using the same.
Abstract: A functional separator capable of improving the capacity and lifetime of a battery by coating a material capable of reducing lithium polysulfide on a separator surface in order to resolve the problems caused by leaching of lithium polysulfide, a preparation method thereof and a lithium secondary battery including the same. The functional separator includes a base separator; a conductive carbon layer on the surface of the base separator; and a metal oxide formed on at least one of an interior and the surface of the conductive carbon layer.
Abstract: Systems and methods for quantum random number generation are provided. In some implementations, a method can include obtaining data indicative of a quantum circuit used by the quantum random number generation system to generate a quantum entropy source for determining a random number. The quantum entropy source can include a plurality of output samples. Each output sample can be obtained by measuring an output of the quantum circuit. The method can include performing one or more simulations of the quantum circuit to obtain a simulated output distribution of the quantum circuit without access to data associated with the random number. The method can include providing data indicative of the simulated output distribution for use in a verification process for the quantum random number generation system. The verification process can determine the use of the quantum computing system in generation of the quantum entropy source.
Type:
Grant
Filed:
April 2, 2021
Date of Patent:
June 18, 2024
Assignee:
GOOGLE LLC
Inventors:
Sergio Boixo Castrillo, Alan Kar-Lun Ho, Jimmy C. Chau
Abstract: Disclosed are electrode arrays and methods of focusing charge density (voltage or current) at a functional surface on electrode arrays. An example method comprises: a. providing an electrode array comprising: i. a support substrate; ii. at least one surface structure protruding from an upper surface of the support substrate wherein the surface structure includes an electrode layer; iii. a functional surface on the electrode layer, wherein the functional surface is on an upper portion of the at least one surface structure and wherein the functional surface is adapted to contact an active species in a conductive solution; b. exposing the surface structure to the conductive solution comprising an active species, in which a counter electrode is positioned; c. establishing a current or voltage between the functional surface on the electrode layer and the counter electrode such that the charge density is focussed at the functional surface on the electrode layer.
Abstract: A method includes providing a fluid to a structure including an aperture, applying a voltage signal to a circuit that includes the fluid, applying a substantially periodic pressure signal to the fluid, detecting a current signal in the circuit as an analyte passes through the aperture in response to the substantially periodic pressure signal, and processing the current signal and the substantially periodic pressure signal to determine a switch time and a release time for the analyte. An apparatus includes a structure including an aperture to receive a fluid, a voltage source to provide a voltage signal to an electronic circuit having a path that includes the aperture, a pressure signal generator to provide a substantially periodic pressure signal to the fluid, and a system to process the periodic pressure signal and a current signal induced in the electronic circuit.
Type:
Grant
Filed:
March 24, 2022
Date of Patent:
May 28, 2024
Assignee:
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
Abstract: A method for manufacturing an implantable lead includes forming an elongated lead body core that defines a longitudinal axis. The elongated lead body core has a plurality of axially extending channels that are circumferentially spaced apart from one another around the elongated lead body core. The method also includes positioning an electrode ring around the elongated lead body core and electrical conductors. The method includes positioning a respective electrical conductor in each of the axially extending channels and positioning a dielectric insulator ring around the elongated lead body core and electrical conductors.
Abstract: A carbon nanotube composite is described that can be accurately applied to a desired position by inkjet and a dispersion liquid using the same, where a main object is a carbon nanotube composite in which a conjugated polymer is attached to at least a part of the surface of a carbon nanotube, the conjugated polymer having a side chain represented by general formula (1): wherein R, X and A are defined as described.
Abstract: The present disclosure describes several embodiments for methods of deagglomerating, debundling, and dispersing carbon nanotubes and functionalizing such carbon nanotubes without damage to the properties of the carbon nanotubes.
Abstract: Provided is a conductive material that is capable of achieving a high-electric conductivity, long-term stability under an atmospheric environment, heat and humidity stabilities, as well as a conductive film and a solar cell using the same. The conductive material includes a mixture of carbon nanotubes (CNTs) and polystyrene sulfonic acid (PSS acid). The element ratio (S/C ratio) of sulfur (S) to carbon (C) in the mixture may be from 0.001 to 0.1 in terms of the number of atoms. CNTs and PSS acid may make up a content percentage of 10 wt % or more in the mixture. These conductive films comprised of the conductive material 6 may have a weight per unit area of the CNTs in the range from 1 mg/m2 to 10000 mg/m2. The solar cell may include the conductive film 7, wherein the film is on the surface of a semiconductor.
Type:
Grant
Filed:
July 9, 2020
Date of Patent:
March 19, 2024
Assignees:
Waseda University, Sino-Japan Electric Heater Co., Ltd.
Abstract: A high-performance thermal interface comprising a nanowire array disposed between a bottom metal layer and a top metal layer in which each nanowire is coated with a 3D fuzzy graphene layer. The thermal interface can be used by bonding it to the surfaces of adjoining substrates using layers of solder.
Abstract: The present invention relates to a variable light transmittance element including a variable light transmittance structure, wherein the variable light transmittance structure includes: a first electrode; a variable light transmittance layer made of a transparent semiconductor material in which metal nanoparticles are dispersed, and electrically connected to the first electrode; a second electrode; and an insulating layer interposed between the variable light transmittance layer and the second electrode, and also relates to a color filter for a display device and smart window including the same.
Abstract: The present invention provides a separation membrane that is suitable for separating an acid gas from a gas mixture containing the acid gas and has a high acid gas permeability. A separation membrane (10) of the present invention includes: a separation functional layer (1); a porous support member (3) supporting the separation functional layer (1); and an intermediate layer (2) disposed between the separation functional layer (1) and the porous support member (3), and including a matrix (4) and nanoparticles (5) dispersed in the matrix (4).
Abstract: A vibration device can include a vibration portion; a first electrode portion disposed on a first surface of the vibration portion; and a second electrode portion disposed on a second surface of the vibration portion, in which each of the first and second electrode portions include at least one of a conductive metal particle and a carbon particle.
Type:
Grant
Filed:
December 17, 2021
Date of Patent:
February 20, 2024
Assignee:
LG DISPLAY CO., LTD.
Inventors:
YoungWook Ha, SeungRyull Park, Chiwan Kim, Sungwook Ko
Abstract: A wound dressing apparatus includes a wound dressing member dimensioned for positioning relative to a wound bed. The wound dressing member including an internal vacuum reservoir and has a port in communication with the vacuum reservoir for applying subatmospheric pressure to the vacuum reservoir to facilitate removal of fluid from the wound bed. The wound dressing member includes a visual pressure indicator associated therewith for indicating a level of pressure within the vacuum reservoir. The visual pressure indicator includes color indicia having a plurality of colors corresponding to a condition of the pressure within the vacuum reservoir. The wound dressing member includes a lower absorbent member positionable adjacent the wound bed and an upper member which at least partially defines the vacuum reservoir. At least one of the top member and the lower absorbent member has the visual pressure indicator mounted thereto.
Type:
Grant
Filed:
October 30, 2019
Date of Patent:
February 13, 2024
Assignee:
Smith & Nephew, Inc.
Inventors:
Kurt Haggstrom, E. David Fink, Katja Grundmeier
Abstract: A digital circuit includes at least one quantum wire resonant tunneling transistor that includes an emitter terminal, a base terminal, a collector terminal, an emitter region in connection with the emitter terminal, a base region in connection with the base terminal, a collector region in connection with the collector terminal, an emitter barrier region between the emitter region and the base region, and a collector barrier region between the collector region and the base region. At least one of the emitter region, the base region, and the collector region includes a plurality of metal quantum wires.
Abstract: A quantum dot composition includes a quantum dot, a ligand to bind to a surface of the quantum dot, an additive having an amine group, and a precursor comprising an organometallic compound, the composition forming a modified quantum dot having a reformed surface characteristic. A light emitting element including the modified quantum dot may have improved lifespan, luminous efficiency, and material stability.
Type:
Grant
Filed:
June 8, 2020
Date of Patent:
February 6, 2024
Assignee:
Samsung Display Co., Ltd.
Inventors:
Yunku Jung, Minki Nam, Hyunmi Doh, Yunhyuk Ko, Sungwoon Kim, Jaehoon Kim, Myoungjin Park, Jae Hong Park, Junwoo Park
Abstract: The manufacturing method for the electronic device using graphene includes: forming a catalytic metal, forming a catalytic metal, forming a passivation film so as to expose upper surfaces of the catalytic metal and the catalytic metal, forming a graphene layer on the catalytic metal and catalytic metal that are exposed, forming a insulation film so as to cover the graphene layer, forming a substrate on the insulation film, and removing the catalytic metal.
Abstract: A process for making a carbon nanotube structure includes forming a composite by depositing or growing carbon nanotubes onto a metal substrate, and infusing the carbon nanotubes. In other aspects, a method of making a wire, includes coating carbon nanotubes on a wire, and electroplating the carbon nanotubes. In still other aspects, a method of making a conductor includes growing or depositing vertically aligned carbon nanotubes on a sheet. Yet still, a method of making a cable includes forming multiple composite wires, each composite wire formed by depositing or growing carbon nanotubes onto a metal substrate, and performing a metal infusion of the carbon nanotubes. The method also comprises combining multiple finished composite wires or objects to make large cables or straps.
Type:
Grant
Filed:
July 15, 2022
Date of Patent:
January 9, 2024
Inventors:
Paul Kladitis, Brian Rice, Lingchuan Li
Abstract: A wearable electronic device is provided. The wearable electronic device includes a housing including a first portion constituting a first outer surface of the wearable electronic device and a second portion constituting a second outer surface of the wearable electronic device, at least one electronic component positioned in an inner space of the housing and configured to emit heat, and multiple support structures which are at least partially positioned to correspond to the at least one electronic component between the first portion and the second portion, wherein a boundary part between the first portion and the second portion is at least partially positioned along a surface boundary between the first outer surface and the second outer surface and includes at least one opening, and an at least one distancing space between the multiple support structures is configured to communicate with an outer space of the housing through the at least one opening.
Type:
Grant
Filed:
February 17, 2022
Date of Patent:
January 2, 2024
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Sangchul Jung, Hansang Kim, Yonghyun Park
Abstract: A multilayer wiring substrate according to the present invention includes a dielectric base body, a signal line in or on the dielectric base body, a ground conductor in the dielectric base body, and a graphite sheet in the dielectric base body. The dielectric base body is a laminate including dielectric sheets stacked on top of each other. The ground conductor and the signal line face each other in a stacking direction of the dielectric sheets. The ground conductor overlaps the signal line when viewed in plan in the stacking direction. The graphite sheet and the signal line face each other in the stacking direction without the signal line being located between the graphite sheet and the ground conductor. An upper surface of the graphite sheet is coplanar with an upper surface of the ground conductor or is located below the upper surface of the ground conductor.
Abstract: Various embodiments may provide a spatial light modulator. The spatial light modulator may include a first electrode arrangement. The spatial light modulator may also include a second electrode arrangement. The spatial light modulator may additionally include a liquid crystal (LC) layer between the first electrode arrangement and the second electrode arrangement. The spatial light modulator may also include one or more nanoantennas in contact with the liquid crystal layer. The first electrode arrangement and the second electrode arrangement may be each configured to allow at least a portion of light to pass through.
Type:
Grant
Filed:
June 24, 2019
Date of Patent:
November 21, 2023
Assignee:
Agency for Science, Technology and Research
Inventors:
Xuewu Xu, Ramon Jose Paniagua Dominguez, Arseniy Kuznetsov
Abstract: A number analyzing method, a number analyzing device, and a storage medium for number analysis are disclosed, which enable, with high accuracy, analysis of the number or number distribution of particulate or molecular analytes according to the kinds of the analytes. A computer control program is executed on the basis of a data group of particle-passage detection signals which are detected by a nanopore device in accordance with passage of subject particles through a through-hole. Also, a particle type distribution estimating program is executed, to estimate probability density on the basis of a data group based on feature values indicating feature of the waveforms of pulse signals which correspond to the passage of particles and which are obtained as the particle-passage detection signals. Thus, the number of particles can be derived for each particle type.
Abstract: Provided is a method of producing a patterned flexible electrode including: a nanowire formation step of applying a first dispersion containing a metal nanowire to a first sheet which is unwound from a wound state to form a nanowire network; a fiber formation step of electrospinning a second dispersion containing metal nanoparticles on the nanowire network to form a fiber-nanowire network in which a metallic fiber of the metal nanoparticles being agglomerated is incorporated into the nanowire network; a sintering step of photonically sintering the fiber-nanowire network to form a conductive network; and a patterning step of patterning the fiber-nanowire network before the sintering step or patterning the conductive network after the sintering step.
Type:
Grant
Filed:
January 13, 2021
Date of Patent:
October 3, 2023
Assignees:
SK Innovation Co., Ltd., Industry-Academic Cooperation Foundation, Yonsei University
Inventors:
Jun Hyung Kim, Sang Yoon Ji, Jang-Ung Park
Abstract: The purpose of the present invention is to provide a conductive metal paste having improved conductivity without increasing the amount of a conductive filler to be added. The conductive metal paste contains a metal filler and less than 1 mass % of an ionic liquid, and does not contain carbon nanotubes.
Abstract: Described herein are microelectrode array devices, and methods of fabrication, assembly and use of the same, to provide highly localized neural recording and/or neural stimulation to a neurological target. The device includes multiple microelectrode elements arranged protruding shafts. The protruding shafts are enclosed within an elongated probe shaft, and can be expanded from their enclosure. The microelectrode elements, and elongated probe shafts, are dimensioned in order to target small volumes of neurons located within the nervous system, such as in the deep brain region. Beneficially, the probe can be used to quickly identify the location of a neurological target, and remain implanted for long-term monitoring and/or stimulation.
Type:
Grant
Filed:
June 12, 2020
Date of Patent:
September 26, 2023
Inventors:
André Mercanzini, Philippe Renaud, Claudio Pollo
Abstract: A thermoelectric conversion material is composed of a compound semiconductor including a plurality of base material elements, and includes: an amorphous phase; and crystal phases having an average grain size of more than or equal to 5 nm, each of the crystal phases being in a form of a grain. The plurality of base material elements include a specific base material element that causes an increase of a band gap by increasing a concentration of the specific base material element. An atomic concentration of the specific base material element included in the crystal phases with respect to a whole of the plurality of base material elements included in the crystal phases is higher than an atomic concentration of the specific base material element included in the compound semiconductor with respect to a whole of the plurality of base material elements included in the compound semiconductor.
Type:
Grant
Filed:
March 26, 2019
Date of Patent:
September 12, 2023
Assignees:
SUMITOMO ELECTRIC INDUSTRIES, LTD., TOYOTA SCHOOL FOUNDATION
Abstract: A quantum dot, a quantum dot-polymer composite, and an electronic device including the same. The quantum dot includes a core including a first semiconductor nanocrystal; a first shell including a second semiconductor nanocrystal including a Group III-VI compound on the core; and a second shell including a third semiconductor nanocrystal having a composition different from that of the second semiconductor nanocrystal on the first shell; wherein one of the first semiconductor nanocrystal and the third semiconductor nanocrystal includes a Group III-V compound.
Type:
Grant
Filed:
July 23, 2021
Date of Patent:
September 12, 2023
Assignee:
SAMSUNG ELECTRONICS CO., LTD.
Inventors:
Jihyun Min, Eun Joo Jang, Yong Wook Kim
Abstract: A structured material is provided that includes a substrate and a porous structured polymer layer disposed thereon. The porous structured polymer layer includes a plurality of voids, and has a high hemispherical reflectance a high a hemispherical thermal emittance. The structured material is thus particularly advantageous for cool-roof coatings, enabling surfaces coated by the material to stay cool, even under strong sunlight. The material can be produced via structuring of polymers in a mixture including a solvent and a non-solvent. Sequential evaporation of the solvent and the non-solvent provide a polymer layer with the plurality of voids.
Type:
Grant
Filed:
December 10, 2018
Date of Patent:
August 29, 2023
Assignee:
The Trustees of Columbia University in the City of New York
Abstract: A sensor device includes a flexible instrument (20) including a lumen (22). A plurality of shape or strain sensing optical fibers (14, 16, 18) is integrated in the flexible instrument in the lumen and extends over a length of the flexible instrument. The plurality of optical fibers is configured to measure movement relative to one another to sense a change in distance between the plurality of optical fibers to detect a state of a reconfigurable portion (24) of the flexible instrument.
Type:
Grant
Filed:
July 11, 2017
Date of Patent:
August 22, 2023
Assignee:
KONINKLIJKE PHILIPS N.V.
Inventors:
Molly Lara Flexman, Milan Jan Henri Marell, Paul Thienphrapa
Abstract: This disclosure includes several different features suitable for use in circumaural and supra-aural headphones designs. Designs that include earpad assemblies that improve acoustic isolation are discussed. User convenience features that include automatically detecting the orientation of the headphones on a user's head are also discussed. Various power-saving features, design features, sensor configurations and user comfort features are also discussed.
Type:
Grant
Filed:
May 26, 2022
Date of Patent:
July 11, 2023
Assignee:
APPLE INC.
Inventors:
Edward Siahaan, Daniel R. Bloom, Jason J. LeBlanc, Phillip Qian
Abstract: A multilayer ceramic electronic component includes: a ceramic body including dielectric layers and first and second internal electrodes alternately stacked with respective dielectric layers interposed therebetween; and a first external electrode connected to the first internal electrodes and a second external electrode connected to the second internal electrodes, wherein the dielectric layer includes silicon (Si), each of the first and second internal electrodes includes Si and a conductive metal, and a ratio (B/A) of an average content (B) (wt %) of Si included in each of the first and second internal electrodes to an average content (A) (wt %) of Si included in the dielectric layer is 0.99 or more and 1.41 or less.
Type:
Grant
Filed:
August 16, 2021
Date of Patent:
July 4, 2023
Assignee:
Samsung Electro-Mechanics Co., Ltd.
Inventors:
Young Joon Oh, Yun Jeong Cha, Hyo Min Kang, Jun Oh Kim, Ji Eun Oh, Jeong Ryeol Kim
Abstract: A busbar anchoring system and method for polymer dispersed liquid crystal (PDLC) film layup that includes a plurality of mesh anchors with at least one of the plurality of electrically conductive mesh anchors interposed between and adhesively coupled to a first strip along a first section of the PDLC film layup formed by at least one of two indium tin oxide (ITO) layers flanking a PDLC layer and with at least one of the plurality of mesh anchors interposed between and adhesively coupled to a second strip along a second section of the PDLC film layup and the at least one of the two ITO layers.
Abstract: The disclosure relates to an implant comprising an electronics module and an energy store, wherein the volume of the electronics module is less than 25% of the volume of the energy store.
Type:
Grant
Filed:
July 22, 2019
Date of Patent:
June 13, 2023
Assignee:
BIOTRONIK SE & Co. KG
Inventors:
Thomas Doerr, Ulrich Feese, Rolf Klenner, Torsten Oertmann
Abstract: A multifunctional smart garment textile is disclosed herein. It comprises plural conductive yarns, wherein each of the plural conductive yarns includes cotton threads, multiwalled carbon nanotubes and iodine-modified polypyrrole, and wherein the cotton threads, the multiwalled carbon nanotubes and the iodine-modified polypyrrole are intermingled with each other in a weight ratio ranging from 1:1:1 to 3:1:1.
Abstract: A reservoir element of the first aspect of the present disclosure includes: a spin conduction layer containing a non-magnetic conductor; ferromagnetic layers positioned in a first direction with respect to the spin conduction layer and spaced apart from each other in a plan view from the first direction; and via wirings electrically connected to spin conduction layer on a surface opposite to a surface with the ferromagnetic layers.
Abstract: In various embodiments, a wearable component configured to be worn on a head of a user is disclosed. The wearable component can comprise a wearable support and an electronic component coupled to or disposed within the wearable support. A thermal management structure can be provided in thermal communication with the electronic component. The thermal management structure can be configured to transfer heat from the electronic component away from the head of the user when the wearable support is disposed on the head of the user.
Abstract: A display apparatus includes a first substrate, a second substrate facing the first substrate, lead wirings provided on the first substrate or the second substrate and a first insulator part provided on an upper surface of the second substrate. The lead wirings are arranged in a peripheral region when seen in a plan view and the first insulator part is arranged so as to overlap a display region when seen in a plan view. Second insulator parts or spaces with a permittivity lower than a permittivity of the first insulator part are provided at sides of the first insulator part. The second insulator parts or the spaces are arranged so as to overlap the lead wirings in the peripheral region when seen in a plan view.
Type:
Grant
Filed:
May 27, 2022
Date of Patent:
May 16, 2023
Assignee:
Japan Display Inc.
Inventors:
Koji Ishizaki, Masanobu Ikeda, Hayato Kurasawa, Yoshihiro Watanabe
Abstract: The present invention is directed to electrodepositable compositions comprising: (a) an aqueous medium; (b) an ionic resin; and (c) solid particles comprising: (i) lithium-containing particles, and (ii) electrically conductive particles, wherein the composition has a weight ratio of the solid particles to the ionic resin of at least 17:1, and wherein the weight ratio of the lithium-containing particles to the electrically conductive particles is at least 3:1. The present invention is additionally directed to a battery electrode comprising a substrate and a coating applied to a surface of the substrate. The coating is deposited from the electrodepositable composition described above.
Type:
Grant
Filed:
July 13, 2020
Date of Patent:
May 9, 2023
Assignee:
PPG Industries Ohio, Inc.
Inventors:
Randy E. Daughenbaugh, Stuart D. Hellring
Abstract: A stator for a rotary electric machine includes a stator core with slots and a stator winding. The stator winding includes a phase winding including segment conductors inserted in the slots. The phase winding includes parallel conductors connected in series. Each of the parallel conductors includes segment conductors connected in parallel. When one parallel conductor is regarded as a reference parallel conductor, and the segment conductors constituting the reference parallel conductor are regarded as reference segment conductors, each reference segment conductor includes a first conductor portion constituting a first conductor portion group, and a second conductor portion constituting a second conductor portion group.
Abstract: A method for carbon nanotube purification, preferably including: providing carbon nanotubes; depositing a mask; and/or selectively removing a portion of the mask; and optionally including removing a subset of the carbon nanotubes and/or removing the remaining mask.
Type:
Grant
Filed:
November 19, 2021
Date of Patent:
May 2, 2023
Assignee:
Aligned Carbon, Inc.
Inventors:
John Provine, Cara Beasley, Gregory Pitner
Abstract: In various embodiments, an electronic device includes: a diaphragm, a speaker module including a speaker configured to output a sound through a vibration of the diaphragm, and a housing accommodating the diaphragm and the speaker module therein and including a first space provided in a first direction from the speaker module and a second space provided in a second direction opposite the first direction. The electronic device further includes an air adsorption member comprising an air adsorbing material disposed in the first space and having a volume ratio of 90% or less of the first space, the air adsorption member configured to reduce air resistance to the diaphragm disposed above the speaker module without limiting the vibration of the diaphragm.
Type:
Grant
Filed:
June 23, 2020
Date of Patent:
April 4, 2023
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Joonrae Cho, Changshik Yoon, Kiwon Kim, Myeungseon Kim, Taeeon Kim, Myungcheol Lee, Byounghee Lee, Seongkwan Yang, Woojin Cho, Hochul Hwang
Abstract: The present invention provides an emitter, which comprises carbon nanotubes and is excellent in the efficiency of electron emission, and an X-ray tube comprising the same.
Abstract: Thin-film devices, for example electrochromic devices for windows, and methods of manufacturing are described. Particular focus is given to methods of patterning optical devices. Various edge deletion and isolation scribes are performed, for example, to ensure the optical device has appropriate isolation from any edge defects. Methods described herein apply to any thin-film device having one or more material layers sandwiched between two thin film electrical conductor layers. The described methods create novel optical device configurations.
Type:
Grant
Filed:
August 19, 2020
Date of Patent:
January 24, 2023
Assignee:
View, Inc.
Inventors:
Fabian Strong, Yashraj Bhatnagar, Abhishek Anant Dixit, Todd Martin, Robert T. Rozbicki
Abstract: An electromechanical power switch device and methods thereof. At least some of the illustrative embodiments are devices including a semiconductor substrate, at least one integrated circuit device on a front surface of the semiconductor substrate, an insulating layer on the at least one integrated circuit device, and an electromechanical power switch on the insulating layer. By way of example, the electromechanical power switch may include a source and a drain, a body region disposed between the source and the drain, and a gate including a switching metal layer. In some embodiments, the body region includes a first body portion and a second body portion spaced a distance from the first body portion and defining a body discontinuity therebetween. Additionally, in various examples, the switching metal layer may be disposed over the body discontinuity.
Type:
Grant
Filed:
December 28, 2020
Date of Patent:
January 24, 2023
Assignee:
INOSO, LLC.
Inventors:
Kiyoshi Mori, Ziep Tran, Giang Trung Dao, Michael Edward Ramon
Abstract: An electrically conductive paint is for use at high temperatures. The paint includes conductive particles, such as carbon nanotubes or metal particles, and a silicone base.
Abstract: Flexible and stretchable electronics, including supercapacitors and pressure sensors, are made using carbon nanostructures produced by providing a first composite structure which includes a temporary substrate and an array of carbon nanotubes arranged in a stack on a surface of the temporary substrate such that the stack of carbon nanotubes is oriented generally perpendicular to the surface of the temporary substrate, which may include silicon dioxide. The stack of carbon nanotubes is transferred from the temporary substrate to another substrate, which includes a curable polymer, thereby forming another composite structure comprising the stack of carbon nanotubes and the cured polymer.
Type:
Grant
Filed:
August 14, 2019
Date of Patent:
January 3, 2023
Assignee:
THE TRUSTEES OF THE STEVENS INSTITUTE OF TECHNOLOGY