For Electronic Or Optoelectronic Application Patents (Class 977/932)
  • Patent number: 9035644
    Abstract: Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: May 19, 2015
    Assignee: West Virginia University
    Inventors: Darran Robert Cairns, Wade W. Huebsch, Konstantinos A. Sierros, Matthew S. Shafran
  • Patent number: 9028242
    Abstract: Template and method of making high aspect ratio template, stamp, and imprinting at nanoscale using nanostructures for the purpose of lithography, and to the use of the template to create perforations on materials and products.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: May 12, 2015
    Assignee: Smoltek AB
    Inventors: Amin Saleem Muhammad, David Brud, Jonas Berg, Mohammad Shafiqul Kabir, Vincent Desmaris
  • Publication number: 20150123043
    Abstract: An electrically conductive composition of the present invention contains an expanded graphite, carbon nanotubes, and a polymer compound. An amount of the expanded graphite to be contained is not less than 30 parts by weight and not more than 70 parts by weight with respect to 100 parts by weight of a total amount of the expanded graphite and the polymer compound. An amount of the carbon nanotubes to be contained is not less than 0.5 part by weight and not more than 10 parts by weight with respect to 100 parts by weight of the total amount of the expanded graphite and the polymer compound.
    Type: Application
    Filed: May 14, 2013
    Publication date: May 7, 2015
    Applicant: Zeon Corporation
    Inventors: Tsutomu Nagamune, Masahiro Shigeta, The Ban Hoang, Mitsugu Uejima
  • Patent number: 9024310
    Abstract: An epitaxial structure is provided. The epitaxial structure includes a substrate, an epitaxial layer and a carbon nanotube layer. The epitaxial layer is located on the substrate. The carbon nanotube layer is located between the substrate and the epitaxial layer. The carbon nanotube layer can be a carbon nanotube film drawn from a carbon nanotube array and including a plurality of successive and oriented carbon nanotubes joined end-to-end by van der Waals attractive force therebetween.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: May 5, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Chen Feng, Shou-Shan Fan
  • Patent number: 9024338
    Abstract: The present invention relates to the growing of nitride semiconductors, applicable for a multitude of semiconductor devices such as diodes, LEDs and transistors. According to the method of the invention nitride semiconductor nanowires are grown utilizing a CVD based selective area growth technique. A nitrogen source and a metal-organic source are present during the nanowire growth step and at least the nitrogen source flow rate is continuous during the nanowire growth step. The V/III-ratio utilized in the inventive method is significantly lower than the V/III-ratios commonly associated with the growth of nitride based semiconductor.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: May 5, 2015
    Assignee: QuNano AB
    Inventors: Werner Seifert, Damir Asoli, Zhaoxia Bi, Jonas Ohlsson, Lars Ivar Samuelson
  • Patent number: 9024631
    Abstract: An apparatus, method and computer-readable medium configured to transport a constituent of fluid sample that binds to a functionalized magnetic particle. The apparatus includes a substrate connected to an input port, a magnetic nanowire, and either a temporally changing magnetic field generator or a spin-polarized current source. The magnetic nanowire is disposed in a surface of the substrate. The width and thickness of the magnetic nanowire are configured so that a domain wall propagating along the nanowire in response to the temporally changing magnetic field continuously couples to a superparamagnetic particle introduced into the input port.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: May 5, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Geoffrey Stephen Beach, Elizabeth Ashera Rapoport
  • Publication number: 20150116856
    Abstract: A plasmonic nano-color coating layer includes a composite layer including a plurality of metal particle layers and a plurality of matrix layers and having a periodic multilayer structure in which the metal particle layers and the matrix layers are alternately arranged, a dielectric buffer layer located below the composite layer, and a mirror layer located below the dielectric buffer layer, wherein the color of the plasmonic nano-color coating layer is determined based on a nominal thickness of the metal particle layer and a separation between the metal particle layers.
    Type: Application
    Filed: March 19, 2014
    Publication date: April 30, 2015
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kyeong Seok LEE, Won Mok KIM, Taek Sung LEE, Wook Seong LEE, Doo Seok JEONG, Inho KIM
  • Publication number: 20150114952
    Abstract: A flexible transparent film heater includes an electrically conductive polymer matrix and a conductive filler dispersed uniformly in the electrically conductive polymer matrix and containing a plurality of metal-deposited carbon nano-particles, each of which contains a carbon nano-particle and a metal deposit that is deposited on and that is bonded to the carbon nano-particle through ionic bonding.
    Type: Application
    Filed: April 29, 2014
    Publication date: April 30, 2015
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: Nyan-Hwa TAI, Yu-An LI
  • Patent number: 9017773
    Abstract: A method is described for depositing nanostructures, such as nanostructures of conducting polymers, carbon nanostructures, or combinations thereof. The process comprises placing the nanostructures in a liquid composition comprising an immiscible combination of aqueous phase and an organic phase. The mixture is mixed for a period of time sufficient to form an emulsion and then allowed to stand undisturbed so that the phases are allowed to separate. As a result the nanostructure materials locate at the interface of the forming phases and are uniformly dispersed along that interface. A film of the nanostructure materials will then form on a substrate intersecting the interface, said substrate having been placed in the mixture before the phases are allowed to settle and separate.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: April 28, 2015
    Assignee: The Regents of the University of California
    Inventors: Julio M. D'Arcy, Richard B. Kaner
  • Publication number: 20150108411
    Abstract: A method for preparing graphene nanoplate (GNP) is provided and includes preparing expanded graphite (EG) and exfoliating, grinding, or cracking the expanded graphite to crack the EG induced by gas-phase-collision. A graphene nanoplate paste and a conductive coating layer formed of the graphene nanoplate paste are provided and are prepared by the method for preparing graphene nanoplate.
    Type: Application
    Filed: December 30, 2013
    Publication date: April 23, 2015
    Applicants: Korea Institute of Ceramic Engineering and Technology, HYUNDAI MOTOR COMPANY
    Inventors: Kwang Il Chang, Chul Kyu Song, Dha Hae Kim, Seung Hun Hur
  • Publication number: 20150109652
    Abstract: The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.
    Type: Application
    Filed: August 21, 2012
    Publication date: April 23, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Delia Milliron, Ravisubhash Tangirala, Anna Llordes, Raffaella Buonsanti, Guillermo Garcia
  • Patent number: 9013658
    Abstract: Provided is a method of manufacturing a reflective color filter. According to the method, the reflective color filter may reflect light having a desired wavelength by controlling the distance between colloidal particles. The method of manufacturing a reflective color filter may include forming colloidal particles having a charged surface, forming colloidal crystals by controlling distances between the colloidal particles, and forming a photonic crystal composite by fixing the colloidal crystals having the colloidal particles.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: April 21, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Moon Gyu Han, Yong-wan Jin, Hong-seok Lee
  • Patent number: 9012883
    Abstract: A semiconductor nanowire device includes at least one semiconductor nanowire having a bottom surface and a top surface, an insulating material which surrounds the semiconductor nanowire, and an electrode ohmically contacting the top surface of the semiconductor nanowire. A contact of the electrode to the semiconductor material of the semiconductor nanowire is dominated by the contact to the top surface of the semiconductor nanowire.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 21, 2015
    Assignee: Sol Voltaics AB
    Inventors: Ingvar Åberg, Martin Magnusson, Damir Asoli, Lars Ivar Samuelson, Jonas Ohlsson
  • Publication number: 20150103340
    Abstract: A scattering spectroscopy nanosensor includes a nanoscale-patterned sensing substrate to produce an optical scattering response signal indicative of a presence of an analyte when interrogated by an optical stimulus. The scattering spectroscopy nanosensor further includes a protective covering to cover and protect the nanoscale-patterned sensing substrate. The protective covering is to be selectably removed by exposure to an optical beam incident on the protective covering. The protective covering is to prevent the analyte from interacting with the nanoscale-patterned sensing substrate prior to being removed.
    Type: Application
    Filed: July 29, 2012
    Publication date: April 16, 2015
    Inventors: Gary Gibson, Zhiyong Li, Alexandre M. Bratkovski, Shih-Yuan Wang, Huei Pei Kuo, Steven Barcelo, Zhang-Lin Zhou
  • Publication number: 20150101849
    Abstract: A transparent electrical conductor with a transparent substrate and an electrically conductive layer on the substrate are provided. The conductive layer has a plurality of electrically conductive nanoscale additives. The additives are in electrically conductive contact with one another, in order to form the electrically conductive layer. The substrate is formed from a glass or glass-ceramic material or a composite material having a glass and/or glass-ceramic. The additives are embedded in a matrix layer at least in some regions. The matrix layer is formed by a transparent matrix material. In order to make such a transparent electrical conductor useful, particularly for application in a display, as a touch sensor, or the like for cooking surfaces, the transparent electrical conductor exhibits a temperature resistance of at least 140° C. The additives are dispersed in a matrix material, which is applied as a coating material onto the substrate in one coating step.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: Matthias Bockmeyer, Ulf Hoffmann, Franziska Riethmueller
  • Patent number: 9000660
    Abstract: Hydro-carbon nanorings may be used, e.g., in power storage power transmission and transportation. Sufficiently cooled, an externally hydrogen doped carbon nanoring may be used to create a radial dipole containment field for electrons rotating in the nanoring. Such nanorings may transmit DC current with little or no loss. Similarly, an internally hydrogen doped carbon nanoring may be used to create a radial dipole containment field for positrons rotating in the nanoring. Virtually lossless transmission of AC current may be achieved by pairing such streams of electrons and positrons in their respective containment fields. Closed rotation of such streams may also be used to efficiently store large amounts of electrical energy. Finally, by selectively accelerating and decelerating pairs of such paired electron and positron streams, which are moving at relativistic speeds, differential momentum may be created to cause physical movement.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: April 7, 2015
    Inventor: Laurence H. Cooke
  • Patent number: 8994005
    Abstract: Devices (e.g., optoelectronic devices such as solar cells and infrared or THz photodetectors) with a nanomaterial having vertically correlated quantum dots with built-in charge (VC Q-BIC) and methods of making such devices. The VC Q-BIC material has two or more quantum dot layers, where the layers have quantum dots (individual quantum dots or quantum dot clusters) in a semiconductor material, and adjacent quantum dot layers are separated by a spacer layer of doped semiconductor material. The VC-QBIC nanomaterial provides long photocarrier lifetime, which improves the responsivity and sensitivity of detectors or conversion efficiency in solar cells as compared to previous comparable devices.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: March 31, 2015
    Assignee: The Research Foundation for The State University of New York
    Inventors: Vladimir Mitin, Andrei Sergeyev, Gottfried Strasser
  • Patent number: 8993998
    Abstract: An electro-optic device includes a first electrode, an active layer formed over and electrically connected with the first electrode, a buffer layer formed over and electrically connected with the active layer, and a second electrode formed directly on the buffer layer. The second electrode includes a plurality of nanowires interconnected into a network of nanowires. The buffer layer provides a physical barrier between the active layer and the plurality of nanowires to prevent damage to the active layer while the second electrode is formed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 31, 2015
    Assignee: The Regents of the University of California
    Inventors: Yang Yang, Rui Zhu, Chun Chao Chen, Letian Dou, Gang Li
  • Patent number: 8992739
    Abstract: A method for manufacturing a silicon-based nanocomposite anode active material for the lithium secondary battery and the lithium secondary battery using same, comprising the following steps: a first step of mounting a silicon-based wire between two electrodes, which are placed in a methanol-based solvent atmosphere, and manufacturing a dispersion solution in which silicon-based nanoparticles are dispersed by means of high-voltage pulse discharging; and a second step of manufacturing a silicon-based nanocomposite body by compositing the silicon-based nanoparticles in the solution and a different type of material.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: March 31, 2015
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Yoon-cheol Ha, Chil-hoon Doh, Chu-hyun Cho
  • Patent number: 8994246
    Abstract: Provided is an actuator simultaneously having better deformation response characteristics and larger generative force. The actuator includes a pair of opposing electrodes and an intermediate layer disposed therebetween. The intermediate layer contains at least an electrolyte and includes at least a polymer fiber layer. The polymer fiber layer includes a plurality of polymer fibers crossing each other and intertwined three-dimensionally. The polymer fiber layer has fused portions at intersections of the polymer fibers.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: March 31, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tetsuo Hino, Amita Goyal, Sotomitsu Ikeda
  • Patent number: 8987706
    Abstract: The presently claimed invention provides a highly conductive composite used for electric charge transport, and a method for fabricating said composite. The composite comprises a plurality of one-dimensional semiconductor nanocomposites and highly conductive nanostructures, and the highly conductive nanostructures are incorporated into each of the one-dimensional semiconductor nanocomposite. The composite is able to provide fast electric charge transport, and reduce the rate of electron-hole recombination, ultimately increasing the power conversion efficiency for use in solar cell; provide fast electrons transport, storage of electrons and large surface area for adsorption and reaction sites of active molecular species taking part in photocatalytic reaction; enhance the sensitivity of a surface for biological and chemical sensing purposes for use in biological and chemical sensors; and lower the impedance and increase the charge storage capacity of a lithium-ion battery.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: March 24, 2015
    Assignee: The Hong Kong Polytechnic University
    Inventors: Wallace Woon-Fong Leung, Lijun Yang
  • Patent number: 8986836
    Abstract: Carbon microspheres are doped with boron to enhance the electrical and physical properties of the microspheres. The boron-doped carbon microspheres are formed by a CVD process in which a catalyst, carbon source and boron source are evaporated, heated and deposited onto an inert substrate.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: March 24, 2015
    Assignee: Ohio University
    Inventors: Anima B. Bose, Junbing Yang
  • Patent number: 8981561
    Abstract: According to one embodiment, a semiconductor device in which CNTs are used for a contact via comprise a substrate including a contact via groove, a catalyst layer for CNT growth which is formed at the bottom of the groove, and a CNT via formed by filling the CNTs into the groove in which the catalyst layer is formed. Each of the CNTs is formed by stacking a plurality of graphene layers in a state in which they are inclined depthwise with respect to the groove, and formed such that ends of the graphene layers are exposed on a sidewall of the CNT. Further, the CNT is doped with at least one element from the sidewall of the CNT.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: March 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuro Saito, Makoto Wada, Atsunobu Isobayashi, Akihiro Kajita, Hisao Miyazaki, Tadashi Sakai
  • Patent number: 8980137
    Abstract: A composite for providing electromagnetic shielding including a plurality of nanotubes; and a plurality of elongate metallic nanostructures.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: March 17, 2015
    Assignee: Nokia Corporation
    Inventors: Vladimir Alexsandrovich Ermolov, Markku Anttoni Oksanen, Khattiya Chalapat, Gheorghe Sorin Paraoanu
  • Patent number: 8980531
    Abstract: A transparent component comprises a substrate (1) having an interface surface, with a pattern of electrically conductive copper (2) disposed on the interface surface with of the substrate, wherein the copper has a copper sulfide surface coating (3). It is found that copper with a suitably thin coating layer of copper sulfide has reduced visibility compared with uncoated copper, so that the metal pattern is less distracting to a viewer. The component finds application as part of a touch-sensitive display, with the substrate overlying or forming part of the display, with images on the display being visible to a user through the transparent component.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: March 17, 2015
    Assignee: Conductive Inkjet Technology Limited
    Inventor: Philip Gareth Bentley
  • Publication number: 20150070815
    Abstract: There is provided an electrostatic chuck member made of a complex oxide sintered body obtained by substituting some of yttrium in yttrium aluminum oxide with a rare earth element (RE) excluding yttrium, in which a ratio [NRE/(NY+NRE)] of the number of atoms of the rare earth element excluding yttrium (NRE) to the sum (NY+NRE) of the number of yttrium atoms (NY) and the number of the atoms of the rare earth element excluding yttrium (NRE) is in a range of 0.01 to less than 0.5, and a volume resistance of the complex oxide sintered compact is in a range of 1×1010 ?·cm to less than 1×1015 ?·cm.
    Type: Application
    Filed: August 3, 2012
    Publication date: March 12, 2015
    Inventors: Hironori Kugimoto, Kazuto Ando
  • Publication number: 20150063739
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Application
    Filed: October 24, 2014
    Publication date: March 5, 2015
    Applicant: Naval Research Laboratory
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Publication number: 20150060251
    Abstract: A touch panel includes an insulative substrate, a first adhesive layer, a first transparent conductive layer, a second adhesive layer, a second transparent conductive layer, a number of first electrodes, a first conductive trace, a number of second electrode, and a second conductive trace. The insulative substrate, the first adhesive layer, the first transparent conductive layer, the second adhesive layer, and the second transparent conductive layer are stacked with each other in that order. The first transparent conductive layer and the second transparent conductive layer are electrically insulated from each other only by the second adhesive layer. A method for making the touch panel is also related.
    Type: Application
    Filed: December 10, 2013
    Publication date: March 5, 2015
    Applicant: TIANJIN FUNAYUANCHUANG TECHNOLOGY CO.,LTD.
    Inventors: HO-CHIEN WU, KAI-WEN HSUEH
  • Patent number: 8966730
    Abstract: A method of manufacturing a sensor network is described which includes stretching a silicon substrate over a desired area, and generating a plurality of nodes fabricated on the stretchable silicon substrate. The nodes include at least one of an energy harvesting and storage element, a communication device, a sensing device, and a processor. The nodes are interconnected via interconnecting conductors formed in the substrate.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: March 3, 2015
    Assignee: The Boeing Company
    Inventors: Michael Alexander Carralero, John Lyle Vian
  • Patent number: 8970937
    Abstract: Disclosed herein are novel electrochromic materials. The electrochromic materials produce various colors. The electrochromic materials can be used to form red electrochromic layers in a simple manner. Therefore, the electrochromic materials are suitable for use in the fabrication of RGB full-color electrochromic devices. Also disclosed herein are electrochromic devices fabricated using the electrochromic materials.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung Uk Son, Chang Ho Noh, Ji Min Lee
  • Patent number: 8969731
    Abstract: A patterned transparent conductor includes a substrate and additives at least partially embedded into at least one surface of the substrate and localized adjacent to the surface according to a pattern to form higher sheet conductance portions. The higher sheet conductance portions are laterally adjacent to lower sheet conductance portions.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: March 3, 2015
    Assignee: Innova Dynamics, Inc.
    Inventors: Arjun Srinivas, Matthew R. Robinson, Alexander Chow Mittal, Michael Eugene Young, David Buchanan, Joseph George, Yuka Yoshioka
  • Publication number: 20150054127
    Abstract: Some embodiments include a method of forming a capacitor. An opening is formed through a silicon-containing mass to a base, and sidewalls of the opening are lined with protective material. A first capacitor electrode is formed within the opening and has sidewalls along the protective material. At least some of the silicon-containing mass is removed with an etch. The protective material protects the first capacitor electrode from being removed by the etch. A second capacitor electrode is formed along the sidewalls of the first capacitor electrode, and is spaced from the first capacitor electrode by capacitor dielectric. Some embodiments include multi-material structures having one or more of aluminum nitride, molybdenum nitride, niobium nitride, niobium oxide, silicon dioxide, tantalum nitride and tantalum oxide. Some embodiments include semiconductor constructions.
    Type: Application
    Filed: September 30, 2014
    Publication date: February 26, 2015
    Inventors: Joseph Neil Greeley, Duane M. Goodner, Vishwanath Bhat, Vassil N. Antonov, Prashant Raghu
  • Publication number: 20150053897
    Abstract: The present invention relates to a process for preparing nanoparticles of antimonides of metal element(s) in the form of a colloidal solution, using antimony trihydride (SbH3) as a source of antimony.
    Type: Application
    Filed: February 22, 2013
    Publication date: February 26, 2015
    Inventors: Axel Maurice, Bérangère Hyot, Peter Reiss
  • Publication number: 20150047885
    Abstract: Provided is a patterned conductive film may include a conductive interconnected nano-structure film. The conductive interconnected nano-structure film may include a first region and a second region adjacent to the first region. A conductivity of the first region may be at least 1000 times a conductivity of the second region.
    Type: Application
    Filed: November 15, 2013
    Publication date: February 19, 2015
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Pei Chang, Ming-Huan Yang, Chun-Yi Chiu
  • Patent number: 8957318
    Abstract: Zinc salts have been found to provide anticorrosion properties when incorporated into silver nanowire containing films. Such salts may be incorporated into one of more silver nanowire containing layers or in one or more layers disposed adjacent to the silver nanowire containing layers.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: February 17, 2015
    Assignee: Carestream Health, Inc.
    Inventors: Chaofeng Zou, James B. Philip, Jr., Brian C. Willett
  • Patent number: 8958579
    Abstract: A thermoacoustic device includes a substrate, a sound wave generator and a signal device. The substrate has a net structure and includes a number of first wires and a number of second wires. The first wires and the second wires are crossed with each other. Each of the first wires includes a composite wire. The composite wire includes a carbon nanotube wire structure and a coating layer wrapping the carbon nanotube wire structure. The sound wave generator is located on a surface of the substrate and includes a carbon film. The signal input device is configured to input signals to the sound wave generator.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: February 17, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Xiao-Yang Lin, Lin Xiao, Shou-Shan Fan
  • Patent number: 8955968
    Abstract: An imaging lens unit is presented, comprising an imaging lens having a lens region defining an effective aperture, and a phase coder. The phase coder may be incorporated with or located close to the lens region. The phase coder defines a surface relief along the lens region formed by at least three phase patterns extending along the lens region. Each of the phase patterns differently affecting light components of one of at least three different wavelength ranges while substantially not affecting propagation of light components of other of said at least three wavelength ranges. The surface relief affects light propagation through the lens region to extend a depth of focus for at least one of said at least three wavelength ranges.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: February 17, 2015
    Assignee: Brien Holden Vision Institute
    Inventors: Zeev Zalevsky, Alex Zlotnik, Shai Ben-Yaish, Ofer Limon, Ido Raveh
  • Publication number: 20150042420
    Abstract: A high radio frequency transmission line having a dielectric substrate with two sides and constructed of a transparent material. An electrically conductive strip extends along at least a portion of one side of the substrate. An electrically conductive film is deposited on one of the sides of the substrate at a position spaced from the conductive strip. This conductive film has a thickness sufficiently small so that the film is substantially transparent.
    Type: Application
    Filed: April 8, 2014
    Publication date: February 12, 2015
    Applicant: The United States Government as represented by the
    Inventor: RYAN C. TOONEN
  • Patent number: 8951892
    Abstract: A disclosed method of fabricating a hybrid nanopillar device includes forming a mask on a substrate and a layer of nanoclusters on the hard mask. The hard mask is then etched to transfer a pattern formed by the first layer of nanoclusters into a first region of the hard mask. A second nanocluster layer is formed on the substrate. A second region of the hard mask overlying a second region of the substrate is etched to create a second pattern in the hard mask. The substrate is then etched through the hard mask to form a first set of nanopillars in the first region of the substrate and a second set of nanopillars in the second region of the substrate. By varying the nanocluster deposition steps between the first and second layers of nanoclusters, the first and second sets of nanopillars will exhibit different characteristics.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: February 10, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mark D. Hall, Mehul D. Shroff
  • Patent number: 8947854
    Abstract: A spacer-modified nano graphene platelet electrode, comprising: (a) multiple nano graphene platelets or sheets having an average thickness smaller than 10 nm; and (b) discrete, non-metallic nano-scaled particles that are disposed between two graphene platelets or sheets to serve as a spacer. In such a spacer-modified graphene electrode, large amounts of electrolyte-accessible pores are formed, enabling the formation of large amounts of electric double layer charges in a supercapacitor, which exhibits an exceptionally high specific capacitance.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: February 3, 2015
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Zhenning Yu, Chen-guang Liu, Bor Z. Jang
  • Patent number: 8940190
    Abstract: A composite for providing electromagnetic shielding including a plurality of nanotubes; and a plurality of elongate metallic nanostructures.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: January 27, 2015
    Assignee: Nokia Corporation
    Inventors: Vladimir Alexsandrovich Ermolov, Markku Anttoni Oksanen, Khattiya Chalapat, Gheorghe Sorin Paraoanu
  • Patent number: 8920682
    Abstract: The disclosure generally relates to a dispersion of nanoparticles in a liquid medium. The liquid medium is suitably water-based and further includes an ionic liquid-based stabilizer in the liquid medium to stabilize the dispersion of nanoparticles therein. The stabilizer can be polymeric or monomeric and generally includes a moiety with at least one quaternary ammonium cation from a corresponding ionic liquid. The dispersion suitably can be formed by shearing or otherwise mixing a mixture/combination of its components. The dispersions can be used to form nanoparticle composite films upon drying or otherwise removing the liquid medium carrier, with the stabilizer providing a nanoparticle binder in the composite film. The films can be formed on essentially any desired substrate and can impart improved electrical conductivity and/or thermal conductivity properties to the substrate.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: December 30, 2014
    Assignee: Eastern Michigan University
    Inventor: John Texter
  • Patent number: 8913331
    Abstract: An optical processor is presented for applying optical processing to a light field passing through a predetermined imaging lens unit. The optical processor comprises a pattern in the form of spaced apart regions of different optical properties. The pattern is configured to define a phase coder, and a dispersion profile coder. The phase coder affects profiles of Through Focus Modulation Transfer Function (TFMTF) for different wavelength components of the light field in accordance with a predetermined profile of an extended depth of focusing to be obtained by the imaging lens unit. The dispersion profile coder is configured in accordance with the imaging lens unit and the predetermined profile of the extended depth of focusing to provide a predetermined overlapping between said TFMTF profiles within said predetermined profile of the extended depth of focusing.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: December 16, 2014
    Assignee: Brien Holden Vision Institute
    Inventors: Zeev Zalevsky, Alex Zlotnik, Ido Raveh
  • Publication number: 20140361227
    Abstract: Provided by the present invention is a conductive resin composition which has, by adding small amount of a carbon nanotube thereto, high conductivity and superior processability including moldability while keeping original physical properties owned by the thermoplastic resin itself. Provided is a method for producing a conductive resin composition, that is, a method for producing a conductive resin composition which contains a carbon nanotube and a thermoplastic resin, wherein the method contains following steps of (A) and (B); namely, (A) a step of mixing and dispersing the carbon nanotube, a solvent, and the thermoplastic resin, thereby obtaining a carbon nanotube resin mixture, and (B) a step of removing the solvent while kneading the carbon nanotube resin mixture. Provided further is a conductive resin composition obtained by the said production method.
    Type: Application
    Filed: January 22, 2013
    Publication date: December 11, 2014
    Applicant: DAINICHISEIKA COLOR & CHEMICALS MFG. CO., LTD.
    Inventors: Hisaki Asakawa, Masayuki Shibata, Noritaka Sakuta, Takuma Itoh
  • Patent number: 8906788
    Abstract: A method for making an epitaxial structure is provided. The method includes the following steps. A substrate is provided. The substrate has an epitaxial growth surface for growing epitaxial layer. A first carbon nanotube layer is placed on the epitaxial growth surface. A first epitaxial layer is epitaxially grown on the epitaxial growth surface. A second carbon nanotube layer is placed on the first epitaxial layer. A second epitaxial layer is epitaxially grown on the first epitaxial layer.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: December 9, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Publication number: 20140353020
    Abstract: A touch panel defines a touch region and a routing region. The touch panel includes a substrate, a transparent conductive layer, at least one electrode and at least one lead wire. The substrate has a surface and includes a planar part and a folded part extending from the planar part. The transparent conductive layer is located on the surface of the substrate. At least a first part of the transparent conductive layer is located on the planar part and located in the touch region. The at least one electrode is electrically connected to the conductive layer. The at least one lead wire is electrically connected to the at least one electrode in a one-to-one manner. At least part of the at least one lead wire is located on the folded part. The folded part is located in at least part of the routing region.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Inventors: CHIH-HAN CHAO, PO-SHENG SHIH, JIA-SHYONG CHENG
  • Publication number: 20140353554
    Abstract: An oligophenylene monomer of general formula (I) wherein R1 and R2 are independently of each other H, halogene, —OH, —NH2, —CN, —NO2 or a linear or branched, saturated or unsaturated C1-C40 hydrocarbon residue, which can be substituted 1- to 5-fold with halogene (F, Cl, Br, I), —OH, —NH2, —CN and/or —NO2, and wherein one or more CH2-groups can be replaced by —O— or —S—, or an optionally substituted aryl, alkylaryl or alkoxyaryl residue; and m represents 0, 1 or 2.
    Type: Application
    Filed: December 17, 2012
    Publication date: December 4, 2014
    Applicants: BASF SE, Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Matthias Georg Schwab, Akimitsu Narita, Xinliang Feng, Klaus Muellen
  • Publication number: 20140356277
    Abstract: Methods for converting graphite oxide into graphene by exposure to electromagnetic radiation are described. As an example, graphene oxide may be rapidly converted into graphene upon exposure to converged sunlight.
    Type: Application
    Filed: August 14, 2014
    Publication date: December 4, 2014
    Inventors: Ramaprabhu SUNDARA, Eswaraiah VARRLA, Jyothirmayee Aravind SASIDHARANNAIR SASIKALADEVI
  • Publication number: 20140355930
    Abstract: An all-dielectric metamaterial cladding is provided that can strongly confine light inside conventional low-index dielectric waveguides for use with photonic integrated circuits and nano-photonic devices. A class of metamaterials with dual electric and magnetic anisotropy along with giant birefringence can provide the ideal quasi-transverse electromagnetic mode propagation inside a glass core. A Transformed Cladding Waveguide can show an order of magnitude decreased cross-talk as compared to conventional waveguides.
    Type: Application
    Filed: February 7, 2014
    Publication date: December 4, 2014
    Inventors: Saman Jahani, Zubin Jacob
  • Patent number: 8901247
    Abstract: This disclosure discloses novel responsive polymers that comprise a rod segment and (or) a coil segment. This disclosure also discloses nanomaterial-polymer composite comprising the responsive polymers that are covalently linked with nanomaterials. Also disclosed are polymeric transducer materials and sensor systems that comprise the nanomaterial-polymer composite.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: December 2, 2014
    Assignee: The Regents of the University of California
    Inventors: Jennifer Lu, Shuhuai Xiang