Energy Storage/generating Using Nanostructure (e.g., Fuel Cell, Battery, Etc.) Patents (Class 977/948)
  • Patent number: 9039935
    Abstract: The present invention provides a photoelectric conversion material comprising a fullerene derivative represented by the formula C60(R1)5(R2), wherein each R1 independently represents an organic group having a substituent; and R2 represents a hydrogen atom or a substituted or unsubstituted C1-C30 hydrocarbon group. Further, the present invention also provides a photoelectric conversion device having a self-assembled monomolecular film of the photoelectric conversion material, and a solar cell having the photoelectric conversion device.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: May 26, 2015
    Assignee: Japan Science and Technology Agency
    Inventors: Eiichi Nakamura, Yutaka Matsuo, Katsuhiko Kanaizuka
  • Patent number: 9035534
    Abstract: The electrical energy generating system of the present invention comprises a piece of alignment Buckypaper, an energy generator, a thin deposition and two contacts. The alignment Buckypaper is a thin sheet made from an aggregate of carbon nanotubes. The thin deposition is formed on at least one surface of the alignment Buckypaper by electrolysis to form a semimetal material. A contact is connected with the upper surface of the alignment Buckypaper and the other contact is connected with the lower surface of the alignment Buckypaper. In use, the energy generated by the generator is inputted to the alignment Buckypaper. The energy then ionizes the molecules contained in the alignment Buckypaper. The positive charges move to the upper contact and the negative charges move to the lower contact. Such electrical energy may then be fed to a load connected with the two contacts to do work on the load.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: May 19, 2015
    Inventor: Hsin Yuan Miao
  • Patent number: 9029043
    Abstract: A composite including a metal having oxygen-reducing activity, nitrogen and carbon, the composite comprising polyhedral particles, an electrode catalyst including the composite, a method of preparing the composite, and a fuel cell using the composite.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: May 12, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kang-hee Lee, Chan-ho Pak, Kyo-sung Park, Seon-ah Jin, Kyung-jung Kwon, Dae-Jong Yoo
  • Patent number: 9030801
    Abstract: There is provided a multilayer ceramic capacitor including a ceramic body having first and second side surfaces facing each other, and third and fourth end surfaces connecting the first and second side surfaces, a plurality of internal electrodes formed in the ceramic body and having one ends thereof exposed to the third end surface or the fourth end surface, and a first side margin part and a second side margin part formed such that an average thickness thereof from the first and second side surfaces to edges of the internal electrodes is 18 ?m or less.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: May 12, 2015
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Hyung Joon Kim
  • Patent number: 9030807
    Abstract: A process for preparing a solid electrolytic capacitor comprising application of coverage enhancing catalyst followed by application of a conducting polymer layer wherein the conductive polymeric cathode comprises the coverage enhancement catalyst wherein the conductive polymeric layer has improved coverage of the corners and edges. Coverage enhancing catalyst is removed after coating and curing.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: May 12, 2015
    Assignee: Kemet Electronics Corporation
    Inventors: Antony P. Chacko, Qingping Chen, Yang Jin, Philip M. Lessner, Randolph S. Hahn, Yongjian Qiu, Keith R. Brenneman
  • Patent number: 9017900
    Abstract: A method, according to one embodiment, includes acquiring a structure having an ionically-conductive, electrically-resistive electrolyte/separator layer covering an inner or outer surface of a carbon-containing electrically-conductive hollow fiber and a catalyst along one side thereof, adding an anode that extends along at least part of a length of the structure, and adding a cathode that extends along at least part of the length of the structure, the cathode being on an opposite side of the hollow fiber as the anode.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: April 28, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Kevin C. Langry, Joseph C. Farmer
  • Publication number: 20150096604
    Abstract: The present invention relates to a thermoelectric conversion material including a carbon nanotube, a thermoelectric conversion element including the same, an article for thermoelectric power generation, and a method for manufacturing the thermoelectric conversion element. The thermoelectric conversion material comprising: a carbon nanotube; and a polythiophene polymer constituted of a repeating unit represented by the following formula (1), in Formula (1), each of R1 and R2 independently represents an alkyl group having 1 to 20 carbon atoms.
    Type: Application
    Filed: December 9, 2014
    Publication date: April 9, 2015
    Applicant: FUJIFILM CORPORATION
    Inventors: Eri TAKAHASHI, Yoichi MARUYAMA
  • Patent number: 8992739
    Abstract: A method for manufacturing a silicon-based nanocomposite anode active material for the lithium secondary battery and the lithium secondary battery using same, comprising the following steps: a first step of mounting a silicon-based wire between two electrodes, which are placed in a methanol-based solvent atmosphere, and manufacturing a dispersion solution in which silicon-based nanoparticles are dispersed by means of high-voltage pulse discharging; and a second step of manufacturing a silicon-based nanocomposite body by compositing the silicon-based nanoparticles in the solution and a different type of material.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: March 31, 2015
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Yoon-cheol Ha, Chil-hoon Doh, Chu-hyun Cho
  • Patent number: 8993472
    Abstract: Layered catalyst structures for fuel cells, particularly for a Proton Exchange Membrane Fuel Cell (PEMFC), are produced by a reactive spray deposition technology process. The catalyst layers so produced contain particles sized between 1 and 15 nm and clusters of such particles of a catalyst selected from the group consisting of platinum, platinum alloys with transition metals, mixtures thereof and non-noble metals. The catalyst layers without an electrically conducting supporting medium exhibit dendritic microstructure, providing high electrochemically active surface area and electron conductivity at ultra-low catalyst loading. The catalyst layers deposited on an electrically conducting medium, such as carbon, exhibit three-dimensional functional grading, which provides efficient utilization as a catalyst, high PEMFC performance at the low catalyst loading, and minimized limitations caused by reactant diffusion and activation. The catalytic layers may be produced by a single-run deposition method.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: March 31, 2015
    Assignee: National Research Council of Canada
    Inventors: Justin Roller, Radenka Maric, Khalid Fatih, Roberto Neagu
  • Patent number: 8986836
    Abstract: Carbon microspheres are doped with boron to enhance the electrical and physical properties of the microspheres. The boron-doped carbon microspheres are formed by a CVD process in which a catalyst, carbon source and boron source are evaporated, heated and deposited onto an inert substrate.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: March 24, 2015
    Assignee: Ohio University
    Inventors: Anima B. Bose, Junbing Yang
  • Publication number: 20150070816
    Abstract: A multi-layer capacitor includes an anode, a cathode, a dielectric material, a first endcap, and a second endcap. The anode and cathode are formed of one or more layers of interlaced conductive material. The dielectric material is interposed between each of the layers of the anode and the cathode. The first and second endcaps configured to interconnect each of the layers of the anode and cathode, respectively. The endcaps are formed of conductive nano material. A method of forming an endcap of a capacitor configured to interconnect one or more layers of conductive material includes the step of applying conductive nano material to exposed conductive surfaces of at least one of an anode and a cathode of the one or more layers of conductive material. The method also includes the step of exposing the nano material to a source of energy effective to initiate self-sintering of the nano material.
    Type: Application
    Filed: July 1, 2014
    Publication date: March 12, 2015
    Inventor: RALPH S. TAYLOR
  • Patent number: 8974967
    Abstract: As consistent with various embodiments, an electronic device includes a carbon nanotube film having a plurality of carbon nanotubes. In certain embodiments, a coating, such as an inorganic coating, is formed on a surface of carbon nanotube. The nanotube film supports the device and facilitates electrical conduction therein. The coated nanotube is amenable to implementation with devices such as thin film batteries, a battery separator, thin film solar cells and high-energy Lithium ion batteries.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 10, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior Univerity
    Inventors: Li-Feng Cui, Yi Cui, Liangbing Hu
  • Patent number: 8974960
    Abstract: The present disclosure includes a sulfur-carbon nanotube composite comprising a sheet of carbon nanotubes and sulfur nucleated upon the carbon nanotubes, and methods for synthesizing the same. In some embodiments, the sulfur-carbon composite may further be binder-free and include a sheet of carbon nanotubes, rendering a binder and a current collector unnecessary. In other embodiments of the present disclosure, a cathode comprising the sulfur-carbon nanotube composite is disclosed. In additional embodiments of the present disclosure, batteries may include the cathodes described herein. Those batteries may achieve high rate capabilities.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 10, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Arumugam Manthiram, Yu-Sheng Su
  • Publication number: 20150061460
    Abstract: In an example embodiment, a textile-based energy generator includes first and second electrode substrates, each of the first and second electrode substrates including a textile structure and an energy generation layer between the first and second electrode substrates, the energy generation layer on at least one of the first and second electrode substrates, the energy generation layer configured to generate electrical energy by at least one of generating friction between different materials and contacting and separating the different materials.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 5, 2015
    Inventors: Jihyun BAE, Jongjin PARK, Seongmin KIM, Byoungsun LEE
  • Publication number: 20150059844
    Abstract: A flexible photo-anode of dye-sensitized solar cell and a manufacturing method thereof are provided. The method includes steps of: coating zinc oxide nanoparticles on a flexible substrate to form a seed layer; immersing the flexible substrate into a first reaction solution; heating the seed layer to form a zinc oxide nanowire array; cooling the flexible substrate to the room temperature, immersing it into the second reaction solution, and stirring the second reaction solution, so that the zinc oxide nanowire array forms a cactus-like structure. Thus, the sintering and embossing processes can be prevented.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 5, 2015
    Applicant: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Jih-Jen WU, Geng-Jia CHANG, Shou-Yen LIN, Chun-te WU, Jen-Sue CHEN
  • Patent number: 8966730
    Abstract: A method of manufacturing a sensor network is described which includes stretching a silicon substrate over a desired area, and generating a plurality of nodes fabricated on the stretchable silicon substrate. The nodes include at least one of an energy harvesting and storage element, a communication device, a sensing device, and a processor. The nodes are interconnected via interconnecting conductors formed in the substrate.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: March 3, 2015
    Assignee: The Boeing Company
    Inventors: Michael Alexander Carralero, John Lyle Vian
  • Patent number: 8968924
    Abstract: Compositions, and methods of obtaining them, useful for lithium ion batteries comprising discrete oxidized carbon nanotubes having attached to their surface lithium ion active materials in the form of nanometer sized crystals or layers. The composition can further comprise graphene or oxygenated graphene.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: March 3, 2015
    Assignee: Molecular Rebar Design, LLC
    Inventors: Clive P. Bosnyak, Kurt W. Swogger
  • Patent number: 8962971
    Abstract: Disclosed is a laminated film having: (a) a substrate; and (b) a bonding layer of ethylene polymer on one major surface of the substrate wherein the bonding layer is placed directly on the substrate or there is a (c) primer layer between the substrate and bonding layer. Also disclosed is a solar module made of such a laminated polymer film.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: February 24, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventors: Qiuju Wu, Ruofei Zhao, Shijie Ren, Bo Xu
  • Patent number: 8962213
    Abstract: Methods of making reinforced membrane electrode assemblies are described. Catalyst coated free standing microporous layers and reinforced membrane electrode assemblies are also described.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: February 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Ruichun Jiang, Matthew Dioguardi, Michael T. Flanagan, Craig S. Gittleman
  • Patent number: 8956688
    Abstract: A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: February 17, 2015
    Assignee: UT-Battelle, LLC
    Inventors: Jianlin Li, Beth L. Armstrong, Claus Daniel, David L. Wood, III
  • Patent number: 8952354
    Abstract: A multi junction photovoltaic cell for converting light into electrical energy, comprising a substrate (3) having a surface (31), wherein a region (4) at the surface (31) of the substrate (3) is doped such that a first p-n junction is formed in the substrate (3). The photovoltaic cell has a nanowire (2) that is arranged on the surface (31) of the substrate (3) at a position where the doped region (4) is located in the substrate (3), such that a second p-n junction is formed at the nanowire (2) and in series connection with the first p-n junction.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: February 10, 2015
    Assignee: Sol Voltaics AB
    Inventor: Jerry M. Olson
  • Patent number: 8947854
    Abstract: A spacer-modified nano graphene platelet electrode, comprising: (a) multiple nano graphene platelets or sheets having an average thickness smaller than 10 nm; and (b) discrete, non-metallic nano-scaled particles that are disposed between two graphene platelets or sheets to serve as a spacer. In such a spacer-modified graphene electrode, large amounts of electrolyte-accessible pores are formed, enabling the formation of large amounts of electric double layer charges in a supercapacitor, which exhibits an exceptionally high specific capacitance.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: February 3, 2015
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Zhenning Yu, Chen-guang Liu, Bor Z. Jang
  • Patent number: 8932481
    Abstract: A cathode active material includes a core including a material having an olivine structure, and a nitrogen atom doped into at least a portion of the core.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: January 13, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kyu-sung Park, Young-min Choi
  • Publication number: 20150010788
    Abstract: Provided herein are electrochemical systems and related methods of making and using electrochemical systems. Electrochemical systems of the invention implement novel cell geometries and composite carbon nanomaterials based design strategies useful for achieving enhanced electrical power source performance, particularly high specific energies, useful discharge rate capabilities and good cycle life. Electrochemical systems of the invention are versatile and include secondary lithium ion cells, such as silicon-sulfur lithium ion batteries, useful for a range of important applications including use in portable electronic devices.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 8, 2015
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Adrianus I. ARIA, Morteza GHARIB
  • Publication number: 20150002985
    Abstract: Ultracapacitor electrodes having an enhanced electrolyte-accessible surface area are provided. Such electrodes can include a porous substrate having a solution side and a collector side, the collector side operable to couple to a current collector and the solution side positioned to interact with an electrolytic solution when in use. The electrode can also include a conductive coating formed on the solution side of the porous substrate. The coating can have a first side positioned to interact with an electrolytic solution when in use and a second side opposite the first side. The coating can have discontinuous regions that allow access of an electrolyte solution to the second side during use to enhance electrolyte-accessible surface area of the conductive coating.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Charles W. Holzwarth, Cary L. Pint, Michael C. Graf, Bum Ki Moon
  • Publication number: 20140370380
    Abstract: Provided are nanostructures containing electrochemically active materials, battery electrodes containing these nanostructures for use in electrochemical batteries, such as lithium ion batteries, and methods of forming the nanostructures and battery electrodes. The nanostructures include conductive cores, inner shells containing active materials, and outer shells partially coating the inner shells. The high capacity active materials having a stable capacity of at least about 1000 mAh/g can be used. Some examples include silicon, tin, and/or germanium. The outer shells may be configured to substantially prevent formation of Solid Electrolyte lnterphase (SEI) layers directly on the inner shells. The conductive cores and/or outer shells may include carbon containing materials. The nanostructures are used to form battery electrodes, in which the nanostructures that are in electronic communication with conductive substrates of the electrodes.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 18, 2014
    Inventors: Yi Cui, Song Han, Ghyrn E. Loveness
  • Patent number: 8911887
    Abstract: Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MOx and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: December 16, 2014
    Assignee: Los Alamos National Security, LLC
    Inventors: Nobuhiro Fuke, Alexey Y. Koposov, Milan Sykora, Laura Hoch
  • Patent number: 8906733
    Abstract: A method for creating a nanostructure according to one embodiment includes depositing material in a template for forming an array of nanocables; removing only a portion of the template such that the template forms an insulating layer between the nanocables; and forming at least one layer over the nanocables. A nanostructure according to one embodiment includes a nanocable having a roughened outer surface and a solid core. A nanostructure according to one embodiment includes an array of nanocables each having a roughened outer surface and a solid core, the roughened outer surface including reflective cavities; and at least one layer formed over the roughened outer surfaces of the nanocables, the at least one layer creating a photovoltaically active p-n junction. Additional systems and methods are also presented.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: December 9, 2014
    Assignees: Q1 Nanosystems, Inc., The Regents Of The University Of California
    Inventors: Ruxandra Vidu, Brian Argo, John Argo, Pieter Stroeve, Saif Islam, Jie-Ren Ku, Michael Chen
  • Publication number: 20140352779
    Abstract: One embodiment is a nanostructured arrangement having a base and pyramidal features formed on the base. Each pyramidal feature includes sloping sides converging at a vertex. The nanostructured arrangement further includes a nanostructured surface formed on at least one of the sloping sides of at least one of the pyramidal features. The nanostructured surface has a quasi-periodic, anisotropic array of elongated ridge elements having a wave-ordered structure pattern. Each ridge element has a wavelike cross-section and oriented substantially in a first direction.
    Type: Application
    Filed: January 18, 2012
    Publication date: December 4, 2014
    Applicant: Wostec. Inc.
    Inventors: Valery K. Smirnov, Dmitry S. Kibalov
  • Patent number: 8895350
    Abstract: A method for forming a nanostructure according to one embodiment includes creating a hole in an insulating layer positioned over an electrically conductive layer; and forming a nanocable in the hole such that the nanocable extends through the hole in the insulating layer and protrudes therefrom, the nanocable being in communication with the electrically conductive layer. Additional systems and methods are also presented.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: November 25, 2014
    Assignees: Q1 Nanosystems, Inc, The Regents of the University of California
    Inventors: Brian Argo, Ruxandra Vidu, Pieter Stroeve, John Argo, Saif Islam, Jie-Ren Ku, Michael Chen
  • Patent number: 8895840
    Abstract: A main object of the present invention is to provide a photoelectric conversion device which is capable of improving the photoelectric conversion efficiency.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: November 25, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroyuki Suto
  • Patent number: 8895841
    Abstract: A photovoltaic device includes a silicon substrate, an intrinsic layer, a carbon nanotube structure and a first electrode. The silicon substrate has a front surface and a rear surface. The intrinsic layer is disposed on the front surface of the silicon substrate. The carbon nanotube structure is disposed on the intrinsic layer. The first electrode is disposed on the rear surface of the silicon substrate.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 25, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Hai-Lin Sun, Kai-Li Jiang, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 8894887
    Abstract: Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: November 25, 2014
    Assignees: Solvay USA, Inc., Nano-C, Inc.
    Inventors: Darin W. Laird, Reza Stegamat, Henning Richter, Victor Vejins, Lawrence T. Scott, Thomas A. Lada, II
  • Publication number: 20140338715
    Abstract: A method and device produce thermoelectric power and thermoelectric modules. In one embodiment, a thermoelectric module comprises N-type carbon nanotube film and P-type carbon nanotube film.
    Type: Application
    Filed: March 27, 2014
    Publication date: November 20, 2014
    Applicant: THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Jaime C. Grunlan, Choongho Yu
  • Publication number: 20140335419
    Abstract: Provided is positive electrode material for a highly safe lithium-ion secondary battery that can charge and discharge a large current while having long service life. Disclosed are composite particles comprising: at least one carbon material selected from the group consisting of (i) fibrous carbon material, (ii) chain-like carbon material, and (iii) carbon material produced by linking together fibrous carbon material and chain-like carbon material; and lithium-containing phosphate, wherein at least one fine pore originating from the at least one carbon material opens to outside the composite particle. Preferably, the composite particles are coated with carbon. The fibrous carbon material is preferably a carbon nanotube with an average fiber size of 5 to 200 nm. The chain-like carbon material is preferably carbon black produced by linking, like a chain, primary particles with an average particle size of 10 to 100 nm.
    Type: Application
    Filed: November 14, 2012
    Publication date: November 13, 2014
    Applicant: DENKI KAGAKU KOGYO KABUSHIKI KAISHA
    Inventors: Takashi Kawasaki, Nobuyuki Yoshino, Hiroshi Murata, Takehiko Sawai, Shinji Saito, Kazunori Urao
  • Publication number: 20140332056
    Abstract: A device for generating electric power and absorbing heat is revealed. It comprises a substrate, a plurality of solar chips, a broad spectrum light absorbing layer and a light scattering film on the substrate and beside the solar chips, a hot melt adhesive film, and a transparent cover plate.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: SOUTHERN TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: RUEI-TANG CHEN, JHIH-WUN LAI, RU-SYUAN WU, JYUN-FU SHIH
  • Publication number: 20140326302
    Abstract: An solar cell of the present invention includes a p-type semiconductor layer, an n-type semiconductor layer, and a superlattice semiconductor layer interposed between the p-type semiconductor layer and the n-type semiconductor layer, in which the superlattice semiconductor layer has a superlattice structure in which barrier layers and quantum dot layers each including a plurality of quantum dots are stacked alternately and repeatedly, the superlattice semiconductor layer contains an n-type dopant and has at least two intermediate energy levels at which electrons photoexcited from the valence band of the quantum dots or the barrier layers can be present for a certain period of time, each of the intermediate energy levels is located between the top of the valence band of the barrier layers and the bottom of the conduction band of the barrier layers, each of the intermediate energy levels is formed from one or a plurality of quantum levels of the quantum dots, and the superlattice semiconductor layer contains an
    Type: Application
    Filed: September 20, 2012
    Publication date: November 6, 2014
    Inventors: Yasuhiko Arakawa, Tomohiro Nozawa, Makoto Izumi
  • Publication number: 20140329163
    Abstract: A membrane electrode assembly includes a proton exchange membrane, a first electrode and a second electrode. The proton exchange membrane has two opposite surfaces, a first surface and a second surface. The first electrode is located adjacent to the first surface of the proton exchange membrane, and the first electrode includes a first diffusion layer and a first catalyst layer. The second electrode is located adjacent to the second surface of the proton exchange membrane, and the second electrode includes a second diffusion layer and a second catalyst layer. At least one of the first diffusion layer and the second diffusion layer includes a carbon nanotube structure. A fuel cell using the membrane electrode assembly is also provided.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 6, 2014
    Inventors: LI-NA ZHANG, KAI-LI JIANG, SHOU-SHAN FAN
  • Patent number: 8877541
    Abstract: Nanostructures and photovoltaic structures are disclosed. A nanostructure according to one embodiment includes an array of nanocables extending from a substrate, the nanocables in the array being characterized as having a spacing and surface texture defined by inner surfaces of voids of a template; an electrically insulating layer extending along the substrate; and at least one layer overlaying the nanocables. A nanostructure according to another embodiment includes a substrate; a portion of a template extending along the substrate, the template being electrically insulative; an array of nanocables extending from the template, portions of the nanocables protruding from the template being characterized as having a spacing, shape, and surface texture defined by previously-present inner surface of voids of the template; and at least one layer overlaying the nanocables.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: November 4, 2014
    Assignees: Q1 Nanosystems, Inc., The Regents of the University of California
    Inventors: Brian Argo, Ruxandra Vidu, Pieter Stroeve, John Argo, Jie-Ren Ku
  • Publication number: 20140322610
    Abstract: Compositions, and methods of obtaining them, useful for lithium ion batteries comprising discrete oxidized carbon nanotubes having attached to their surface lithium ion active materials in the form of nanometer sized crystals or layers. The composition can further comprise graphene or oxygenated graphene.
    Type: Application
    Filed: July 8, 2014
    Publication date: October 30, 2014
    Inventors: Clive P. Bosnyak, Kurt W. Swogger
  • Patent number: 8865346
    Abstract: A cathode electrode of a lithium ion battery includes a cathode current collector and a cathode material layer. The cathode material layer is located on a surface of the cathode current collector. The cathode material layer includes a cathode active material. The cathode active material includes sulfur grafted poly(pyridinopyridine). The sulfur grafted poly(pyridinopyridine) includes a poly(pyridinopyridine) matrix and sulfur dispersed in the poly(pyridinopyridine) matrix. The cathode current collector includes a polymer substrate and a graphene layer located on a surface of the polymer substrate adjacent to the cathode material layer. A lithium ion battery using the cathode electrode is also disclosed.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 21, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Xiang-Ming He, Li Wang, Jian-Jun Li, Jian Gao
  • Patent number: 8865336
    Abstract: Provided is a separator for alkaline batteries which can not only prevent batteries from internal short circuit by inhibiting the dendrite formation at anode, but also enables to have a low electrical resistance. The separator for alkaline batteries comprises a composite sheet in which a base layer comprising a wet-type nonwoven material formed from alkaline resistant fibers is covered with a nanofiber layer comprising a modified polyvinyl alcohol fiber which has a fiber diameter of 10 to 1000 nm and a liquid absorption amount by fibers of 4.0 to 40.0 g/g after immersion in a 35% aqueous solution of KOH.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: October 21, 2014
    Assignee: Kuraray Co., Ltd.
    Inventors: Tomohiro Hayakawa, Shinya Inada, Hideo Hayashi, Hiroyuki Kawai, Masakazu Nishiyama
  • Patent number: 8866000
    Abstract: An ultra-efficient device for converting light into electricity has a dielectric medium for input light propagation, a metallic medium having an array of surface-plasmon-polariton (SPP) resonator cavities formed at nano-scale and distributed in the metallic medium below the dielectric-metal interface, each nano-scale resonator cavity having a hollow interior as a metal cathode in which a metal anode is disposed, another metallic medium electrically coupled to the anode, and another dielectric medium insulating the anode medium from the cathode medium. In each cavity, the cathode is shaped, dimensioned and spaced from the anode so that standing waves of SPP excitations generated by the input light cause quantum field emission of electrons to be rectified as an electrical output. The SPP resonator cavities may be formed in a plurality of diametral sizes corresponding to component light wavelengths to allow full spectrum energy conversion of broadband light input.
    Type: Grant
    Filed: July 31, 2010
    Date of Patent: October 21, 2014
    Inventor: Leo D. DiDomenico
  • Publication number: 20140308522
    Abstract: The present invention relates to a nano-graphite plate structure with N graphene layers stacked together, where N is 30 to 300. The nanometer nano-graphite structure has a tap density of 0.1 g/cm3 to 0.01 cm3, a thickness of 10 nm to 100 nm, and a lateral dimension of 1 ?m to 100 ?m. The ratio of the lateral dimension to the thickness is between 10 and 10,000. The oxygen content is less than 3 wt %, and the carbon content is larger than 95 wt %. The nano-graphite plate structure has both the excellent features of the graphene and the original advantages of easy processability of the natural graphite so as to be broadly used in various application fields.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 16, 2014
    Applicant: Enerage Inc.
    Inventors: Mark Y. WU, Cheng-Yu HSIEH, Geng-Wei LIN, Ping-Yun YEH
  • Publication number: 20140301020
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Application
    Filed: February 5, 2014
    Publication date: October 9, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski, George Gruner
  • Publication number: 20140301013
    Abstract: There is provided a multilayer ceramic capacitor including a ceramic body having first and second side surfaces facing each other, and third and fourth end surfaces connecting the first and second side surfaces, a plurality of internal electrodes formed in the ceramic body and having one ends thereof exposed to the third end surface or the fourth end surface, and a first side margin part and a second side margin part formed such that an average thickness thereof from the first and second side surfaces to edges of the internal electrodes is 18 ?m or less.
    Type: Application
    Filed: June 21, 2013
    Publication date: October 9, 2014
    Inventor: Hyung Joon KIM
  • Publication number: 20140301022
    Abstract: A process for preparing a solid electrolytic capacitor comprising application of a non-ionic polyol prior to application of a conducting polymer layer.
    Type: Application
    Filed: May 29, 2014
    Publication date: October 9, 2014
    Inventors: Qingping Chen, Hong Zhang, Antony P. Chacko, Philip M. Lessner, Randolph S. Hahn, Yongjian Qiu, Keith R. Brenneman
  • Patent number: 8854793
    Abstract: An electrode paste for a supercondenser. The electrode paste is a mixture containing a polymer formed using a liquid softening agent and an active charge. The paste is in the form of gel having an elasticity module of between 104 and 108 Pascal, at extrusion temperatures, in a range of frequencies of between 0.01 and 100 Hz.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: October 7, 2014
    Assignee: Blue Solutions
    Inventors: Hélène Drevet, Isabelle Rey, Michel Peillet, Frédèric Abribat
  • Patent number: 8853347
    Abstract: An organic semiconductor compound may include a structural unit represented by the aforementioned Chemical Formula 1 and an organic thin film and an electronic device may include the organic semiconductor compound.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: October 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong il Park, Bang Lin Lee, Jong Won Chung
  • Patent number: 8853526
    Abstract: Photovoltaic devices are driven by intense photoemission of “hot” electrons from a suitable nanostructured metal. The metal should be an electron source with surface plasmon resonance within the visible and near-visible spectrum range (near IR to near UV (about 300 to 1000 nm)). Suitable metals include silver, gold, copper and alloys of silver, gold and copper with each other. Silver is particularly preferred for its advantageous opto-electronic properties in the near UV and visible spectrum range, relatively low cost, and simplicity of processing.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: October 7, 2014
    Assignee: The Regents of The University of California
    Inventors: Robert Kostecki, Samuel Mao