Of Mechanical Property Patents (Class 977/956)
  • Patent number: 12011223
    Abstract: The present invention relates to an eye phantom for evaluating a retinal angiography image, and a manufacturing method therefor. A purpose of the present invention is to provide an eye phantom for evaluating a retinal angiography image, capable of simulating even the vascular structure and blood flow of a retina so as to be more similar to an actual retinal structure than a conventional eye phantom; and a manufacturing method therefor. More specifically, a purpose of the present invention is to provide an eye phantom for evaluating a retinal angiography image, including various shapes of fine fluid channel structures corresponding to the vascular structure formed in an actual retina; and a manufacturing method therefor.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: June 18, 2024
    Assignee: Korea Research Institute of Standards and Science
    Inventors: Sang Won Lee, Il Doh, Hyunji Lee
  • Patent number: 11926713
    Abstract: A polymer gel may comprise a polymer gel base material and superparamagnetic nanoparticles. At least 25 wt. % of the superparamagnetic nanoparticles may have diameters in a first size range between a first diameter and a second diameter. At least 25 wt. % of the superparamagnetic nanoparticles may have diameters in a second size range between a third diameter and a fourth diameter. The Brownian relaxation time of the portion of the superparamagnetic nanoparticles in the first size range may be at least 5 times the Neel relaxation time of the portion of the superparamagnetic nanoparticles in the first size range. The Neel relaxation time of the portion of the superparamagnetic nanoparticles in the second size range may be at least 5 times the Brownian relaxation time of the portion of the superparamagnetic nanoparticles in the second size range. Methods for monitoring gel integrity in a wellbore are further included.
    Type: Grant
    Filed: April 25, 2023
    Date of Patent: March 12, 2024
    Inventors: Jesus Manuel Felix Servin, Amr I. Abdel-Fattah
  • Patent number: 11730392
    Abstract: A breathing-driven flexible respiratory sensor includes: a test cavity and a digital electrometer, wherein an upper internal wall of the test cavity is provided with an upper detecting component, and a lower internal wall of the test cavity is provided with a lower detecting component; the upper detecting component and the lower detecting component is arranged in a longitudinal symmetry form; wherein the upper detecting component comprises a substrate, an electrode and a gas sensitive film bonded in sequence from top to bottom, and the substrate is bonded to the upper internal wall of the test cavity; wherein a rubber airbag is disposed in the test cavity, and a friction film is bonded to the rubber airbag; an air inlet cylinder is connected to a left end of the rubber airbag, and an air outlet cylinder is connected to a right end of the rubber airbag.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: August 22, 2023
    Assignee: University of Electronic Science and Technology of China
    Inventors: Yadong Jiang, Huiling Tai, Bohao Liu, Si Wang, Zhen Yuan, Qi Huang, Guangzhong Xie
  • Patent number: 11667760
    Abstract: A polymer gel may comprise a polymer gel base material and superparamagnetic nanoparticles. At least 25 wt. % of the superparamagnetic nanoparticles may have diameters in a first size range between a first diameter and a second diameter. At least 25 wt. % of the superparamagnetic nanoparticles may have diameters in a second size range between a third diameter and a fourth diameter. The Brownian relaxation time of the portion of the superparamagnetic nanoparticles in the first size range may be at least 5 times the Neel relaxation time of the portion of the superparamagnetic nanoparticles in the first size range. The Neel relaxation time of the portion of the superparamagnetic nanoparticles in the second size range may be at least 5 times the Brownian relaxation time of the portion of the superparamagnetic nanoparticles in the second size range. Methods for monitoring gel integrity in a wellbore are further included.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: June 6, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Jesus Manuel Felix Servin, Amr I. Abdel-Fattah
  • Patent number: 11625120
    Abstract: A display device, and a method of manufacturing the same, includes an encapsulation layer on a display area and a routing area, a touch insulation film on the encapsulation layer and including a plurality of grooves in a first area of the routing area, the routing area including the first area overlapping a folding area of a substrate and a second area not overlapping the folding area, a touch cover on the touch insulation film, a plurality of touch electrodes, at least part of which is disposed at a position overlapping an active area between the encapsulation layer and the touch insulation film or between the touch insulation film and the touch cover, and a plurality of touch signal lines in the routing area and respectively in the plurality of grooves or between the plurality of grooves in the first area, extending in the second direction.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: April 11, 2023
    Assignee: LG Display Co., Ltd.
    Inventors: Yangsik Lee, HwiDeuk Lee
  • Publication number: 20150035642
    Abstract: A touch panel including a first insulation substrate, a first conductive film, a first insulation film, first conductive wires, a second insulation substrate, a second conductive film, and second conductive wires is provided. The first conductive film is disposed on the first insulation substrate and the first insulation layer covers a portion of a periphery of the first conductive film so that the first conductive film has an exposed region. The first conductive wires are disposed on the periphery of the first conductive film and each of the first conductive wires includes an electrode segment and an extending segment. The electrode segment is electrically connected with the first conductive film and the extending segment is electrically isolated from the first conductive film. The second conductive film is disposed on the second insulation substrate. The second conductive wires are disposed on the periphery of the second conductive film.
    Type: Application
    Filed: September 17, 2014
    Publication date: February 5, 2015
    Inventors: PO-SHAN HUANG, CHIH-HAN CHAO, PO-SHENG SHIH, JIA-SHYONG CHENG
  • Publication number: 20150035411
    Abstract: A pressing force sensor that includes a flat membrane piezoelectric element and a support. The flat membrane piezoelectric element includes a piezoelectric sheet having a piezoelectric constant d14. A first electrode is formed on a first main surface of the piezoelectric sheet and a second electrode is formed on a second main surface thereof. Long directions of the first electrode and the second electrode and a uniaxial stretching direction of the piezoelectric sheet form an angle of 45°. An opening portion having an elliptical section is formed on the support. The flat membrane piezoelectric element abuts the opening portion of the support. The support and the flat membrane piezoelectric element are disposed such that the opening portion is included within an area of the second electrode.
    Type: Application
    Filed: October 16, 2014
    Publication date: February 5, 2015
    Inventors: Hideki Kawamura, Masamichi Ando
  • Publication number: 20140343379
    Abstract: A method and communication system for ophthalmic device manufacturing line is disclosed. More specifically, the communication device may be incorporated in early stages of manufacturing of the ophthalmic device to monitor process controls without delay. In some embodiments, a unique pedigree profile can be stored for an ophthalmic device during manufacturing and correlated with one or more of: design profiles, controlled process parameters, performance, and distribution channels.
    Type: Application
    Filed: May 17, 2013
    Publication date: November 20, 2014
    Applicant: Johnson & Johnson Vision Care, Inc.
    Inventor: Randall B. PUGH
  • Patent number: 8877538
    Abstract: The present disclosure relates to a pressure sensor having a nanostructure and a method for manufacturing the same. More particularly, it relates to a pressure sensor having a nanostructure attached on the surface of the pressure sensor and thus having improved sensor response time and sensitivity and a method for manufacturing the same. The pressure sensor according to the present disclosure having a nanostructure includes: a substrate; a source electrode and a drain electrode arranged on the substrate with a predetermined spacing; a flexible sensor layer disposed on the source electrode and the drain electrode; and a nanostructure attached on the surface of the flexible sensor layer and having nanosized wrinkles.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: November 4, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Jin Seok Kim, Jun-Kyo Francis Suh, Sung Chul Kang, Jeong Hoon Lee
  • Patent number: 8857275
    Abstract: An apparatus, system, device, and method provide the ability to measure forces a cell exerts on its surroundings. A platform is suspended across an opening using support legs. The platform is able to move horizontally in a plane of the opening. A piezoresistive strain sensor is integrated into the platform and measures strain induced in the support legs when the platform moves horizontally thereby measuring displacement of the platform.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: October 14, 2014
    Assignee: California Institute of Technology
    Inventors: Blake Waters Axelrod, Paula Popescu, Michael L. Roukes
  • Patent number: 8835191
    Abstract: Methods for sensing a mechanical stress and methods of making stress sensor integrated circuits. The sensing methods include transferring the mechanical stress from the object to one or more nanowires in a stress sensor or stress sensor circuit and permitting the nanowires to change in length in response to the mechanical stress. An electrical characteristic of the stress sensor or stress sensor circuit, which has a variation correlated with changes in the magnitude of the mechanical stress, is measured and then assessed to determine the stress magnitude. The manufacture methods include electrically connecting nanowire field effect transistors having, as channel regions, one or more nanowires of either a different crystalline orientation or a different body width for the individual nanowires so that an offset output voltage results when mechanical strain is applied to the nanowires.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, Oki Gunawan, Shih-Hsien Lo, Jeffrey W. Sleight
  • Publication number: 20140145817
    Abstract: A resistance-type touch panel includes a first electrode plate and the second electrode plate spaced from and opposite to the first electrode plate. The first electrode plate includes a first substrate and a first transparent conductive layer. The second electrode plate includes a second substrate and a second transparent conductive layer. The first transparent conductive layer includes a carbon nanotube film. The carbon nanotube film includes a number of carbon nanotube wires substantially parallel with each other and a number of carbon nanotube clusters located between the number of carbon nanotube wires. The carbon nanotube wires extend along an X direction and are spaced from each other along a Y direction. The carbon nanotube clusters between each adjacent two of the carbon nanotube wires are spaced from each other along the X direction. The X direction is intercrossed with the Y direction.
    Type: Application
    Filed: April 16, 2013
    Publication date: May 29, 2014
    Applicant: BEIJING FUNATE INNOVATION TECHNOLOGY CO., LTD.
    Inventor: BEIJING FUNATE INNOVATION TECHNOLOGY CO., LTD.
  • Publication number: 20140144766
    Abstract: A capacitance-type touch panel includes an insulating layer, a first transparent conductive layer, a number of first electrodes, a second transparent conductive layer, and at least one second electrode. The first transparent conductive layer includes a carbon nanotube film. The carbon nanotube film includes a number of carbon nanotube wires substantially parallel with each other and a number of carbon nanotube clusters located between the number of carbon nanotube wires. The carbon nanotube wires extend along an X direction and are spaced from each other along a Y direction. The carbon nanotube clusters between each adjacent two of the carbon nanotube wires are spaced from each other along the X direction. The X direction is intercrossed with the Y direction.
    Type: Application
    Filed: April 16, 2013
    Publication date: May 29, 2014
    Applicant: Beijing FUNATE Innovation Technology Co., LTD.
    Inventors: CHEN FENG, LI QIAN, YU-QUAN WANG
  • Publication number: 20140118634
    Abstract: In one aspect, a touch panel comprising a substrate and a first conductive patterned portion that is formed on the substrate is provided. The first conductive patterned portion may include: a first direction conductive portion that is formed on the substrate, the first direction conductive portion including a plurality of first body members, a first intermediate member formed between the first body members, and a first connection member which is electrically connected to the first body members; and a second direction conductive portion that is formed on the substrate and is insulated from the first direction conductive portion, the first intermediate member including a plurality of second body members and a second connection member which is electrically connected to the second body members.
    Type: Application
    Filed: June 26, 2013
    Publication date: May 1, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: Sung-Ku Kang, Mi-Ae Park
  • Publication number: 20140055392
    Abstract: A large-area touch panel utilizing carbon nanotubes (CNT units) includes a first carbon nanotube (CNT) sub-panel and a second CNT sub-panel, the second CNT sub-panel is attached to the second CNT sub-panel to form a single CNT panel assembly. Each of the first CNT sub-panel and the second CNT sub-panel includes a CNT film having a plurality of CNT units, with an orientation of the CNT units in one sub-panel being perpendicular to the CNT units of the other sub-panel.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Applicant: TIANJIN FUNAYUANCHUANG TECHNOLOGY CO.,LTD.
    Inventor: HO-CHIEN WU
  • Publication number: 20140054150
    Abstract: A carbon nanotube (CNT) touch panel includes a base with a first touch region and a second touch region, a first CNT film placed on the first touch region of the base, a second CNT film placed on the second touch region of the base, and a flexible printed circuit (FPC) mounted on an edge of the base. A plurality of first connection wires and a plurality of second connection wires are formed on the base. The first connection wires interconnect the first CNT film and the FPC, and the second connection wires interconnect the second CNT film and the FPC.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Applicant: TIANJIN FUNAYUANCHUANG TECHNOLOGY CO.,LTD.
    Inventor: HO-CHIEN WU
  • Publication number: 20140054151
    Abstract: A touch panel includes a first sub-panel and a second sub-panel. One of the first sub-panel and the second sub-panel comprises a carbon nanotube (CNT) film. Each of the first sub-panel and the second sub-panel comprises a touch sensing region and a first side region connecting a first side of the touch sensing region. The first side region is bent towards the touch sensing region and an intersection angle is formed between the side region and the touch sensing region. The first side region of the first sub-panel is attached to the first side region of the second sub-panel such that the touch sensing region of the first sub-panel and the touch sensing region of the second sub-panel are joined together.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Applicant: TIANJIN FUNAYUANCHUANG TECHNOLOGY CO.,LTD.
    Inventor: HO-CHIEN WU
  • Publication number: 20140054152
    Abstract: A touch panel includes a first sub-panel and a second sub-panel. Each of the first sub-panel and the second sub-panel comprises a carbon nanotube (CNT) film and defines a touch sensing region and a first side region connecting a first side of the touch sensing region. The first side region is bent towards the touch sensing region and an intersection angle is formed between the side region and the touch sensing region. The first side region of the first sub-panel is attached to the first side region of the second sub-panel such that the touch sensing region of the first sub-panel and the touch sensing region of the second sub-panel are located in a same plane and joined together.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Applicant: TIANJIN FUNAYUANCHUANG TECHNOLOGY CO.,LTD.
    Inventor: HO-CHIEN WU
  • Publication number: 20140020474
    Abstract: The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.
    Type: Application
    Filed: September 24, 2013
    Publication date: January 23, 2014
    Applicant: UT-BATTELLE LLC
    Inventors: Ilia N. Ivanov, David B. Geohegan
  • Patent number: 8614492
    Abstract: Stress sensors and stress sensor integrated circuits using one or more nanowire field effect transistors as stress-sensitive elements, as well as design structures for a stress sensor integrated circuit embodied in a machine readable medium for designing, manufacturing, or testing an integrated circuit, and related methods thereof. The stress sensors and stress sensor integrated circuits include one or more pairs of gate-all-around field effect transistors, which include one or more nanowires as a channel region. The nanowires of each of the field effect transistors are configured to change in length in response to a mechanical stress transferred from an object. A voltage output difference from the field effect transistors indicates the magnitude of the transferred mechanical stress.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: December 24, 2013
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, Oki Gunawan, Shih-Hsien Lo, Jeffrey W Sleight
  • Publication number: 20130328798
    Abstract: A touch panel includes a substrate, a transparent conducting layer, and an antireflection film. The substrate is made of sapphire, and includes a first surface and a second surface opposite to the first surface. The transparent conducting layer is covered on the first surface and is configured for detecting a touch operation thereon. The antireflection film is coated on the second surface and is configured for increasing the transmissivity of the substrate in relation to visual light.
    Type: Application
    Filed: November 13, 2012
    Publication date: December 12, 2013
    Inventor: GA-LANE CHEN
  • Publication number: 20130319841
    Abstract: A touch panel includes a first conductive layer, an insulating layer and a second conductive layer. The first conductive layer, the insulating layer, and the second conductive layer are stacked in that order. The first conductive layer includes a carbon nanotube layer. The carbon nanotube layer includes a large number of carbon nanotubes, and the carbon nanotubes are arranged substantially along a first direction. The second conductive layer includes a number of metal strips. The metal strips are spaced from each other. The metal strips are arranged substantially along a second direction, and the first direction and the second direction are intersected.
    Type: Application
    Filed: December 28, 2012
    Publication date: December 5, 2013
    Applicant: SHIH HUA TECHNOLOGY LTD.
    Inventors: CHIH-HAN CHAO, PO-SHENG SHIH, JIA-SHYONG CHENG
  • Publication number: 20130299220
    Abstract: Provided is a touch panel. The touch panel includes a substrate and an electrode member disposed on the substrate. The electrode member includes a base material for electrode having first and second surfaces opposite to each other, a first electrode disposed on the first surface, and a second electrode disposed on the second surface.
    Type: Application
    Filed: December 20, 2011
    Publication date: November 14, 2013
    Applicant: LG INNOTEK CO., LTD.
    Inventors: Dong Youl Lee, Young Jin Noh, Young Sun You, Sun Young Lee, Yong Jin Lee, Kyoung Hoon Chai
  • Publication number: 20130285160
    Abstract: A microscale device comprises a patterned forest of vertically grown and aligned carbon nanotubes defining a carbon nanotube forest with the nanotubes having a height defining a thickness of the forest, the patterned forest defining a patterned frame that defines one or more components of a microscale device. A conformal coating of substantially uniform thickness at least partially coats the nanotubes, defining coated nanotubes and connecting adjacent nanotubes together, without substantially filling interstices between individual coated nanotubes. A metallic interstitial material infiltrates the carbon nanotube forest and at least partially fills interstices between individual coated nanotubes.
    Type: Application
    Filed: October 22, 2012
    Publication date: October 31, 2013
    Applicant: Brigham Young University
    Inventor: Brigham Young University
  • Publication number: 20130213140
    Abstract: A flexible substrate has a major surface and a sensor attached to and aligned with the major surface of the substrate. The sensor may have an elastic body containing conductive nanotubes homogeneously distributed therein to form a conductive path and at least two electrodes in electrical connection with the conductive path. Balloons and flexible elements used in medical procedures are particularly useful.
    Type: Application
    Filed: August 30, 2012
    Publication date: August 22, 2013
    Applicant: 7-SIGMA, INC.
    Inventors: Wade R. Eichhorn, Richard Duda, Kristian G. Wyrobek, Ahmet Serdar Sezen
  • Publication number: 20130176072
    Abstract: A touch sensor using a graphene diode and/or a touch panel including the touch sensor. The touch sensor includes a first sensing electrode configured to sense a touch; a first output line configured to transmit an electrical signal; and a first diode device including a first control terminal connected to the first sensing electrode, a first anode terminal connected to a voltage application unit, and a first cathode terminal connected to the first output line.
    Type: Application
    Filed: January 9, 2013
    Publication date: July 11, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Samsung Electronics Co., Ltd.
  • Publication number: 20130167272
    Abstract: Disclosed is an electrical-mechanical complex sensor for nanomaterials, including: a detector having a piezoelectric film therein, for measuring a mechanical property of a nanomaterial when a bending or tensile load is applied to the nanomaterial; a first detection film formed at an end of the detector to measure the mechanical property and an electrical property of the nanomaterial) in real time at the same time, when the nanomaterial contacts the first detection film; and a support to which one end of the detector is integrally connected, for supporting the detector.
    Type: Application
    Filed: January 10, 2011
    Publication date: June 27, 2013
    Applicant: KOREA RESEARCH INSTITUTE OF STANDARDS AND SCIENCE
    Inventors: Seung Hoon Nahm, Hoon Sik Jang, Sang Gu Jeon, Min Seok Kim
  • Publication number: 20130140611
    Abstract: The present disclosure relates to a pressure sensor having a nanostructure and a method for manufacturing the same. More particularly, it relates to a pressure sensor having a nanostructure attached on the surface of the pressure sensor and thus having improved sensor response time and sensitivity and a method for manufacturing the same. The pressure sensor according to the present disclosure having a nanostructure includes: a substrate; a source electrode and a drain electrode arranged on the substrate with a predetermined spacing; a flexible sensor layer disposed on the source electrode and the drain electrode; and a nanostructure attached on the surface of the flexible sensor layer and having nanosized wrinkles.
    Type: Application
    Filed: November 27, 2012
    Publication date: June 6, 2013
    Inventors: Jin Seok KIM, Jun-Kyo Francis SUH, Sung Chul KANG, Jeong Hoon LEE
  • Patent number: 8451124
    Abstract: A method for sensing a stimulus comprising providing a sensing assembly having a first structure and a second structure, wherein the first structure is made of a material different than the second structure and each of the first structure and the second structure is nanoscale. The method further includes providing an inductive antenna operably coupled to the sensing assembly, disposing the sensing assembly upon a spatial area, exposing the sensing assembly to the stimulus thereby producing a detectable change in the sensing assembly, and wirelessly coupling a reader with the inductive antenna to obtain a signal representative of the detectable change in the sensing assembly.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: May 28, 2013
    Assignee: The Regents of The University of Michigan
    Inventors: Jerome P. Lynch, Nicholas A. Kotov, Kenneth J. Loh
  • Publication number: 20130026038
    Abstract: Devices and methods for detecting the length of analytes, and/or sequencing analytes are provided in which two or more electrical signals are obtained as an analyte traverses a fluidic channel. Detection of the relative position of probes hybridized to a biopolymer and/or the length of the analyte (e.g., a biopolymer) does not rely on the absolute time between detection events of a given electrical signal to determine a distance associated with the biopolymer. Instead, multiple signals are obtained as functions of time) corresponding to a plurality of detector volumes at known locations along a fluidic channel through which the biopolymer passes, and the distances are determined from the multiple signals.
    Type: Application
    Filed: August 6, 2012
    Publication date: January 31, 2013
    Applicant: NABsys, Inc.
    Inventor: John S. Oliver
  • Patent number: 8347726
    Abstract: A sensing device includes a nanowire configured to deform upon exposure to a force, and a transducer for converting the deformation into a measurement. The nanowire has two opposed ends; and the transducer is operatively connected to one of the two opposed ends of the nanowire. The other of the two opposed ends of the nanowire is freestanding.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: January 8, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Nobuhiko P. Kobayashi, Shih-Yuan Wang, Alexandre M. Bratkovski, R. Stanley Williams
  • Patent number: 8344060
    Abstract: Polymer nanocomposites exhibit a reversible change in stiffness and strength in response to a stimulus. The polymer nanocomposites include a matrix polymer with a comparably low modulus and strength and nanoparticles that have a comparably high modulus and strength. The particle-particle interactions are switched by the stimulus, to change the overall material's mechanical properties. In a preferred embodiment, a chemical regulator is used to facilitate changes of the mechanical properties. Methods for inducing modulus changes in polymer nanocomposites are also disclosed.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: January 1, 2013
    Assignees: Case Western Reserve University, The United States of America as Represented by the Department of Veterans Affairs
    Inventors: Christoph Weder, Stuart J. Rowan, Jeffrey R. Capadona, Dustin J. Tyler, Kadhiravan Shanmuganathan, Otto van den Berg
  • Publication number: 20120322164
    Abstract: Nanowire array structures based on periodic or aperiodic nanowires are provided in various configurations for sensing and interacting with light and substances to provide various functions such as sensors for detecting DNAs and others and solar cells for converting light into electricity.
    Type: Application
    Filed: April 16, 2012
    Publication date: December 20, 2012
    Inventors: Amit Lal, Yuerui Lu
  • Publication number: 20120292162
    Abstract: Provided are an electronic device, a method of manufacturing the same, and a touch panel including the device. The electronic device includes a nanostructure having a plurality of metal oxide nanorods vertically aligned at predetermined intervals in intersection regions between bottom electrodes and top electrodes that perpendicularly cross each other. The nanorods are formed to the same diameter and the same height so that the electronic device can exhibit uniform performance. Also, a method of manufacturing an electronic device includes selectively vertically growing the same number of metal oxide nanostructures with a uniform size only on the bottom electrodes using a nano-template with a plurality of vertical holes. Furthermore, a touch panel includes a nanostructure having a plurality of piezoelectric nanorods disposed in a plurality of touch cells arranged in a matrix.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 22, 2012
    Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Huisu Jeong, Gun-Young Jung
  • Publication number: 20120280334
    Abstract: In an acceleration sensor, a sensor unit includes a weight portion having a recess section with one open surface and a solid section one-piece formed with the recess section, beam portions for rotatably supporting the weight portion such that the recess section and the solid section are arranged along a rotation direction, a movable electrode, fixed electrodes, detection electrodes electrically connected to the fixed electrodes to detect a capacitance between the movable electrode and the fixed electrodes. A fixed plate is arranged in a spaced-apart relationship with a surface of the weight portion on which the movable electrode is provided, and embedment electrodes are embedded in the fixed plate to extend along a thickness direction of the fixed plate, the embedment electrodes having one end portions facing the movable electrode to serve as the fixed electrodes and the other end portions configured to serve as the detection electrodes.
    Type: Application
    Filed: November 17, 2010
    Publication date: November 8, 2012
    Applicant: Panasonic Corporation
    Inventors: Hitoshi Yosida, Yuji Suzuki
  • Patent number: 8278727
    Abstract: A method for providing a pressure sensor substrate comprises creating a first cavity that extends inside the substrate in a first direction perpendicular to a main surface of the substrate, and that extends inside the substrate, in a second direction perpendicular to the first direction, into a first venting area of the substrate; creating a second cavity that extends in the first direction inside the substrate, that extends in parallel to the first cavity in the second direction, and that does not extend into the first venting area; and opening the first cavity in the first venting area.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: October 2, 2012
    Assignee: Infineon Technologies AG
    Inventors: Thoralf Kautzsch, Marco Müller, Dirk Meinhold, Ben Rosam, Klaus Elian, Stefan Kolb
  • Publication number: 20120234080
    Abstract: A method for measuring the average viscosity of a test fluid uses calibrated magnetic nanoparticles, with certain chosen hydrodynamic diameters and actual lateral dimensions (e.g. diameters), that are mixed into a small volume of the test fluid and a single magnetic relaxation curve measurement to provide data for viscosity determination. The distribution of hydrodynamic particle sizes of an ensemble of magnetic nanoparticles that are magnetically blocked at room temperature can be determined. Modifications of the method can be used to determine the distribution of viscosities in a complex fluid at the sub-microscopic level providing a novel type of viscosity measurement.
    Type: Application
    Filed: February 29, 2012
    Publication date: September 20, 2012
    Inventors: Natalie L. Adolphi, Edward R. Flynn, Howard Bryant, Kimberly Butler
  • Patent number: 8268556
    Abstract: The invention includes RNA complexes comprising at least three monomeric units of an RNA molecule, each monomeric unit comprising an RNA polymer having first and second helical domains that have respective first and second binding sites, wherein the first binding sites are adapted to binding to one another and are not adapted to bind to the second binding sites, and the second binding sites are adapted to binding to one another and are not adapted to bind to the first binding sites; such that the at least three monomeric units are adapted to self-assemble by forming pairs of cognate interactions and so as to form the RNA complex in a circular closed complex. The invention also includes derivatives of these complexes including aptamers, and analytical methods and devices using same.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: September 18, 2012
    Assignee: Bowling Green State University
    Inventor: Neocles Leontis
  • Patent number: 8265884
    Abstract: A method of measuring the elastic modulus and hardness of a thin film on substrate using nanoindentation technique is provided. The method includes calculating a series of experimental corrected stiffness and contact radius pairs associated with one or more presumed parameters and information obtained from a loading curve associated with the thin film and substrate. Also, the method includes calculating a series of theoretical corrected stiffness and contact radius pairs associated with the same one or more presumed parameters and information obtained from the loading curve associated with the thin film and substrate. Furthermore, the method includes using results obtained from the experimental and theoretical corrected stiffness and contact radius pairs to compute the elastic modulus and hardness of the film material.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: September 11, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Han Li, Joost Vlassak
  • Publication number: 20120193684
    Abstract: An efficient deposition process is provided for fabricating reliable RF MEMS capacitive switches with multilayer ultrananocrystalline (UNCD) films for more rapid recovery, charging and discharging that is effective for more than a billion cycles of operation. Significantly, the deposition process is compatible for integration with CMOS electronics and thereby can provide monolithically integrated RF MEMS capacitive switches for use with CMOS electronic devices, such as for insertion into phase array antennas for radars and other RF communication systems.
    Type: Application
    Filed: April 5, 2011
    Publication date: August 2, 2012
    Applicant: UChicago Argonne, LLC
    Inventors: Anirudha V. Sumant, Orlando H. Auciello, Derrick C. Mancini
  • Publication number: 20120193685
    Abstract: A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a “fast discharge diamond dielectric layer” and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.
    Type: Application
    Filed: April 7, 2011
    Publication date: August 2, 2012
    Applicant: UChicago Argonne, LLC
    Inventors: Charles L. Goldsmith, Orlando H. Auciello, John A. Carlisle, Suresh Sampath, Anirudha V. Sumant, Robert W. Carpick, James Hwang, Derrick C. Mancini, Chris Gudeman
  • Publication number: 20120103099
    Abstract: A laser vibration sensor, system and method of vibration sensing employ a nanostructured resonance interactor. The sensor includes a resonator cavity of a laser and the nanostructured resonance interactor. The resonator cavity has a resonance deterministic of a characteristic of an output signal of the laser. The nanostructured resonance interactor modulates the resonance of the resonator cavity in response to a vibration. A change in the output signal characteristic induced by a resonance modulation is representative of the vibration. The system further includes an output signal detector. The method includes modulating a resonance characteristic of the resonator cavity using a nanostructure that responds to the vibration being sensed.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Inventors: Michael J. Stuke, Shih-Yuan (SY) Wang
  • Patent number: 8161803
    Abstract: A microelectromechanical (MEMS) nanoindenter transducer including a body, a probe moveable relative to the body, an indenter tip coupled to an end of the moveable probe, the indenter tip moveable together with the probe, and a micromachined comb drive. The micromachined comb drive includes an electrostatic actuator capacitor comprising a plurality of comb capacitors configured to drive the probe, together with the indenter tip, along a displacement axis, including in an indentation direction, upon application of a bias voltage to the actuation capacitor.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: April 24, 2012
    Assignee: Hysitron Incorporated
    Inventors: Yunje Oh, Syed Amanula Syed Asif, Oden Warren
  • Patent number: 8037775
    Abstract: A system for locating impacts comprises at least one array of a plurality of carbon nanotubes, each carbon nanotube operable to emit electrical activity when compressed. The system also comprises at least one sensor coupled to the at least one array configured to detect emitted electrical activity from the plurality of carbon nanotubes. Furthermore, a computer is configured to determine the location of an impact on the at least one array in response to the detected emitted electrical activity from the plurality of carbon nanotubes.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: October 18, 2011
    Assignee: Raytheon Company
    Inventors: Timothy J. Imholt, Gary A. Frazier
  • Patent number: 7997125
    Abstract: A miniaturized spring element is intended to be particularly suitable for use as a beam probe or cantilever for detecting atomic or molecular forces, in particular in an atomic force microscope, and, to this end, is intended to make it possible to detect its deflection in a particularly reliable manner and with high resolution. For this purpose, the spring element contains a basic body which is formed from a matrix containing embedded nanoparticles or defects. The spring element is produced using the principle of local deposition with focused energetic particles or electromagnetic waves or by pyrolytically induced deposition.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: August 16, 2011
    Assignees: Nanoscale Systems, Nanoss GmbH, Johann Wolfgang Goethe-Universitaet
    Inventors: Alexander Kaya, Michael Huth
  • Patent number: 7971489
    Abstract: A robust, stand-alone load cell comprises a block of aligned carbon nanotubes with parallel electrodes on opposing sides of the block and an electrical circuit connected between the electrodes for measuring the electrical resistance of the block. The nanotubes are preferably aligned perpendicular to the electrodes. Carbon nanotube-based load cells may be incorporated into a wafer assembly for characterizing semiconductor processing equipment. Such a wafer assembly includes two parallel wafers with a plurality of carbon nanotube load cells positioned between and attached to both wafers. The load cells are independently electrically connected to a device which monitors and records the resistivity of the load cell.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: July 5, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Victor L. Pushparaj, Omkaram Nalamasu, Manoocher Birang
  • Patent number: 7966898
    Abstract: A microfluidic embedded nanoelectromechanical system (NEMs) force sensor provides an electrical readout. The force sensor contains a deformable member that is integrated with a strain sensor. The strain sensor converts a deformation of the deformable member into an electrical signal. A microfluidic channel encapsulates the force sensor, controls a fluidic environment around the force sensor, and improves the read out. In addition, a microfluidic embedded vacuum insulated biocalorimeter is provided. A calorimeter chamber contains a parylene membrane. Both sides of the chamber are under vacuum during measurement of a sample. A microfluidic cannel (built from parylene) is used to deliver a sample to the chamber. A thermopile, used as a thermometer is located between two layers of parylene.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: June 28, 2011
    Assignee: California Institute of Technology
    Inventors: Michael L. Roukes, Chung-Wah Fon, Wonhee Lee, Hongxing Tang, Blake Waters Axelrod, John Liang Tan
  • Publication number: 20110095267
    Abstract: Stress sensors and stress sensor integrated circuits using one or more nanowire field effect transistors as stress-sensitive elements, as well as design structures for a stress sensor integrated circuit embodied in a machine readable medium for designing, manufacturing, or testing an integrated circuit, and related methods thereof. The stress sensors and stress sensor integrated circuits include one or more pairs of gate-all-around field effect transistors, which include one or more nanowires as a channel region. The nanowires of each of the field effect transistors are configured to change in length in response to a mechanical stress transferred from an object. A voltage output difference from the field effect transistors indicates the magnitude of the transferred mechanical stress.
    Type: Application
    Filed: October 26, 2009
    Publication date: April 28, 2011
    Applicant: International Business Machines Corporation
    Inventors: Andres Bryant, Oki Gunawan, Shih-Hsien Lo, Jeffrey W. Sleight
  • Publication number: 20110051775
    Abstract: The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 3, 2011
    Applicant: UT-BATTELLE, LLC
    Inventors: Ilia N. Ivanov, David Bruce Geohegan
  • Publication number: 20110006286
    Abstract: An electrical device includes an insulating substrate; an elongated piezoelectric semiconductor structure, a first electrode and a second electrode. A first portion of the elongated piezoelectric semiconductor structure is affixed to the substrate and a second portion of the elongated piezoelectric semiconductor structure extends outwardly from the substrate. The first electrode is electrically coupled to a first end of the first portion of the elongated piezoelectric semiconductor structure. The second electrode is electrically coupled to a second end of the first portion of the elongated piezoelectric semiconductor structure.
    Type: Application
    Filed: August 13, 2010
    Publication date: January 13, 2011
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Zhong L. Wang, Peng Fei