Patents Represented by Attorney Alan K. Aldous
  • Patent number: 6346831
    Abstract: The invention involves a die having domino circuits. In some embodiments, at least some of the domino circuits include an output stage and a domino stage including a domino stage output node coupled to the output stage. The domino stage includes a wide-fanin evaluate network including the domino stage output node and at least one intermediate node. The domino stage has improved noise immunity and reduced leakage through reverse body biasing transistors in the evaluate network by raising voltage of the at least one intermediate node without static power consumption through the evaluate network. In other embodiments, at least some of the domino circuits include an output stage and a domino stage including a domino stage output node coupled to the output stage. The domino stage includes a wide-fanin evaluate network including the domino stage output node and wherein the domino stage further includes a diode transistor having a gate and an additional terminal connected to the domino stage output node.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: February 12, 2002
    Assignee: Intel Corporation
    Inventors: Ram K. Krishnamurthy, Lei Wang, Rajamohana Hegde
  • Patent number: 6332214
    Abstract: In one implementation, the invention involves a computer implemented method used in compiling a program. The method includes selecting conflict regions of the program. The method further includes performing invalidation profiling of load instructions with respect to certain ones of the conflict regions to determine invalidation rates of the load instructions. The method may further include a feedback step in which the invalidation rates are used by a scheduler of the compiler to determine whether to move the load instructions to target locations.
    Type: Grant
    Filed: May 8, 1998
    Date of Patent: December 18, 2001
    Assignee: Intel Corporation
    Inventor: Youfeng Wu
  • Patent number: 6300819
    Abstract: One embodiment of the invention includes a semiconductor circuit including a ground voltage node to provide a ground voltage and pFET transistors having an n-type body electrically coupled to the ground voltage node to forward body bias the pFET transistors. Another embodiment of the invention includes a semiconductor circuit including a supply voltage node to provide a supply voltage and nFET transistors having a p-type body electrically coupled to the supply voltage node to forward body bias the nFET transistors. Still another embodiment of the invention includes a semiconductor circuit including a ground voltage node to provide a ground voltage and pFET transistors having an n-type body electrically coupled to the ground voltage node to forward body bias the pFET transistors. The circuit also includes a supply voltage node to provide a supply voltage and nFET transistors having a p-type body electrically coupled to the supply voltage node to forward body bias the nFET transistors.
    Type: Grant
    Filed: May 13, 1998
    Date of Patent: October 9, 2001
    Assignee: Intel Corporation
    Inventors: Vivek K. De, Ali Keshavarzi, Siva G. Narendra, Shekhar Y. Borkar
  • Patent number: 6271713
    Abstract: In some embodiments, the invention includes a die having a driver circuit. The driver circuit includes a driver input node and a driver output node. An nFET pull-up transistor is connected to the driver output node, and wherein the nFET pull-up transistor is at times forward body biased and the forward body bias is substantially greatest when a signal at the driver input node begins to switch high and substantially least when the switching has already essentially occurred. In some embodiments, the driver includes a first inverter to receive an input signal from the driver input node and provide an inverted input signal at a first inverter output node. The driver includes second inverter to receive the inverted input signal from the first inverter output node and provide a driver output signal at the driver output node. The driver includes an nFET pull-up transistor connected between the driver output node and a power supply node, the nFET pull-up transistor having a gate tied to the driver input node.
    Type: Grant
    Filed: May 14, 1999
    Date of Patent: August 7, 2001
    Assignee: Intel Corporation
    Inventor: Ram K. Krishnamurthy
  • Patent number: 6272666
    Abstract: In some embodiments, the invention includes a system having first and second domains. The system includes a first performance detection circuitry including some transistors of the first domain to provide a first performance rating signal indicative of transistor switching rates of the first domain. The system includes second performance detection circuitry including some transistors of the second domain to provide a second performance rating signal indicative of transistor switching rates the second domain. The system further includes control circuitry to receive the first and second performance rating signals and control a setting for a body bias signal for the first domain and control a setting for a body bias signal for the second domain responsive to the performance rating signals. In some embodiments, the control circuitry also provides supply voltage signals and clock signals responsive to the performance signals.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: August 7, 2001
    Assignee: Intel Corporation
    Inventors: Shekhar Y. Borkar, Vivek K. De, Ali Keshavarzi, Siva G. Narendra
  • Patent number: 6247121
    Abstract: In one embodiment, a processor includes thread management logic including a thread predictor having state machines to indicate whether thread creation opportunities should be taken or not taken. The processor includes a predictor training mechanism to receive retired instructions and to identify potential threads from the retired instructions and to determine whether a potential thread of interest meets a test of thread goodness, and if the test is met, one of the state machines that is associated with the potential thread of interest is updated in a take direction, and if the test is not met, the state machine is updated in a not take direction. The thread management logic may control creation of an actual thread and may further include reset logic to control whether the actual thread is reset and wherein if the actual thread is reset, one of the state machines associated with the actual thread is updated in a not take direction.
    Type: Grant
    Filed: September 21, 1998
    Date of Patent: June 12, 2001
    Assignee: Intel Corporation
    Inventors: Haitham Akkary, Quinn A. Jacobson
  • Patent number: 6240509
    Abstract: In one embodiment of the invention, a processor includes an execution pipeline to execute instructions, wherein at least some of the instructions are executed speculatively. The processor also includes a trace buffer outside the execution pipeline to hold the instructions, and wherein instructions that are associated with speculation errors are replayed in the execution pipeline from the trace buffer. In another embodiment, the processor includes an execution pipeline to execute instructions, wherein at least some of the instructions are executed speculatively. The processor also includes a trace buffer outside the execution pipeline to hold instructions and results of the execution of the instructions, wherein at least some of the instructions are subject to an initial retirement following execution in the pipeline, but remain in the trace buffer until a final retirement.
    Type: Grant
    Filed: December 16, 1997
    Date of Patent: May 29, 2001
    Assignee: Intel Corporation
    Inventor: Haitham Akkary
  • Patent number: 6232827
    Abstract: In one embodiment, a semiconductor circuit includes a first group of field effect transistors having a body and parameters including a net channel doping level DL1. The circuit also includes a conductor to provide a first voltage to the body to forward body bias the first group of transistors, the first group of transistors having a forward body bias threshold voltage (VtFBB) when forward body biased, wherein DL1 is at least 25% higher than a net channel doping level in the first group of transistors that would result in a zero body bias threshold voltage equal to VtFBB, with the parameters other than the net channel doping level being unchanged. In another embodiment, the semiconductor circuit includes a first circuit including a first group of field effect transistors having a body.
    Type: Grant
    Filed: May 13, 1998
    Date of Patent: May 15, 2001
    Assignee: Intel Corporation
    Inventors: Vivek K. De, Ali Keshavarzi, Siva G. Narendra, Shekhar Y. Borkar
  • Patent number: 6225826
    Abstract: In some embodiments, the invention includes a domino logic gate circuit having a domino state and a single ended domino compatible dual function generator. The domino state receives a domino stage input signal and provides a single ended intermediate signal as a function of the domino stage input signal, the intermediate signal having a state. The generator receives the intermediate signal and provides an out signal and an out* signal each having a state, wherein the out and out* signals have the same state during a precharge phase and have complementary states during an evaluate phase as a function of the state of the intermediate signal. In other embodiments, the invention includes domino logic gate circuit having a combined domino stage and dual function generator. The domino stage is to receive a domino stage input signal.
    Type: Grant
    Filed: December 23, 1998
    Date of Patent: May 1, 2001
    Assignee: Intel Corporation
    Inventors: Ram K. Krishnamurthy, Krishnamurthy Soumyanath, Mark A. Anders
  • Patent number: 6219741
    Abstract: In one embodiment, the invention includes an apparatus, such as a bridge, for use with a computer system having a processor bus. The apparatus includes decode logic to receive through the processor bus a task priority update transaction including data representative of a task priority designation of a processor of the computer system, and to provide a signal responsive thereto. The apparatus also includes remote priority capture logic to receive the signal responsive to the task priority update transaction and update contents of the remote priority capture logic in response thereto. In another embodiment, the invention includes an apparatus for use with a computer system having a processor bus. The apparatus includes decode logic to receive through the processor bus an end-of-interrupt (EOI) transactions and to provide an EOI signal responsive thereto.
    Type: Grant
    Filed: December 10, 1997
    Date of Patent: April 17, 2001
    Assignee: Intel Corporation
    Inventors: Stephen S. Pawlowski, Daniel G. Lau, Kimberly C. Weier
  • Patent number: 6218895
    Abstract: In one embodiment to the invention, a semiconductor circuit includes a substrate and a first well formed in the substrate. A first group of field effect transistors is formed in the first well and has a first body. The circuit includes a first body voltage to the first body to forward body bias the first group of field effect transistors. The circuit includes a first isolation structure to contain the first body voltage in the first well. In another embodiment, the circuit further includes a second group of field effect transistors having a non-forward body bias and the first isolation structure prevents the first body voltage from influencing a voltage of a body of the second group of field effect transistors. In yet another embodiment, a second isolation structure adjacent to the second well contain a second body voltage in a second well holding the second group of field effect transistors.
    Type: Grant
    Filed: May 13, 1998
    Date of Patent: April 17, 2001
    Assignee: Intel Corporation
    Inventors: Vivek K. De, Ali Keshavarzi, Siva G. Narendra, Shekhar Y. Borkar
  • Patent number: 6218892
    Abstract: In some embodiments, the invention includes circuit having a differential amplifier and body bias control circuitry. The differential amplifier includes a differential pair of first and second FET transistors to at least partially control output voltage signals responsive to input voltage signals, the first and second FET transistors being configured to be matched and having a body. The body bias control circuitry provides a body bias voltage signal to the body to place the first and second FET transistors in a forward body bias condition. The differential amplifier and body bias circuitry may be used in a sense amplifier, comparator, voltage controlled oscillator, delay locked loop, and phase locked loop as well as other circuits.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: April 17, 2001
    Assignee: Intel Corporation
    Inventors: Krishnamurthy Soumyanath, Ali Keshavarzi, Vivek K. De, Shekhar Y. Borkar
  • Patent number: 6204696
    Abstract: In some embodiments, the invention includes a domino circuit having a precharge circuit including a source follower nFET device coupled to a domino stage conductor. An evaluation path circuit is also coupled to the domino stage conductor. A hysteretic output stage receives a signal from the domino stage conductor and provide therefrom an evaluated output signal. In other embodiments, the invention includes a domino circuit having a predischarge circuit coupled to a domino stage conductor. An evaluation path circuit includes source follower nFET devices coupled to the domino stage conductor. A hysteretic output stage receives a signal from the domino stage conductor and provides therefrom an evaluated output signal. In still other embodiments, the invention includes a domino circuit having a precharge circuit including coupled to a domino stage conductor. An evaluation path circuit is coupled to the domino stage conductor.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: March 20, 2001
    Assignee: Intel Corporation
    Inventors: Ram K. Krishnamurthy, Krishnamurthy Soumyanath
  • Patent number: 6202204
    Abstract: In one implementation of the invention, a computer implemented method used in compiling a program includes identifying a covering load, which may be one of a set of covering loads, and a redundant load. The covering load and the redundant load have a first and second load type, respectively. The first and the second load type each may be one of a group of load types including a regular load and at least one speculative-type load. In one implementation, the group of load types includes at least one check-type load. One implementation of the invention is in a machine readable medium.
    Type: Grant
    Filed: March 11, 1998
    Date of Patent: March 13, 2001
    Assignee: Intel Corporation
    Inventors: Youfeng Wu, Yong-Fong Lee
  • Patent number: 6182210
    Abstract: In one embodiment of the invention, a processor includes an execution pipeline to concurrently execute at least portions of threads, wherein at least one of the threads is dependent on at least another one of the threads. The processor also includes detection circuitry to detect speculation errors in the execution of the threads. In another embodiment, the processor includes thread management logic to control dynamic creation of threads from a program.
    Type: Grant
    Filed: December 16, 1997
    Date of Patent: January 30, 2001
    Assignee: Intel Corporation
    Inventors: Haitham Akkary, Kingsum Chow
  • Patent number: 6181608
    Abstract: In some embodiments, the invention includes an integrated circuit including a bitline and a bitline#, wordlines, and memory cells. The memory cells each corresponding to one of the wordlines and each include first and second pass transistors coupled between first and second storage nodes, respectively, and the bitline and bitline#, respectively, the corresponding wordline being coupled to gates of the first and second pass transistors. The memory cells include first and second inverters cross-coupled between the first and second storage nodes, wherein the first and second pass transistors each have a lower threshold voltage than do transistors of the first and second inverters. Wordline voltage control circuitry coupled to the wordlines selectively controls wordline signals on the wordlines.
    Type: Grant
    Filed: March 3, 1999
    Date of Patent: January 30, 2001
    Assignee: Intel Corporation
    Inventors: Ali Keshavarzi, Kevin Zhang, Yibin Ye, Vivek K. De
  • Patent number: 6166584
    Abstract: The present invention includes a semiconductor circuit including one or more transistors each having a body and one or more a variable voltage source to selectively provide a forward bias to the bodies at certain times and to provide a non-forward bias to the body at other times. The semiconductor circuit includes voltage control circuitry to control whether the variable voltage source provides the forward bias or the non-forward bias. In some embodiments of the invention, the voltage control circuit controls the variable voltage source such that the forward bias is provided during an active mode of the transistors and the non-forward bias is provided during a standby mode of the transistors. In some embodiments of the invention, the voltage control circuitry derives a priori knowledge of the mode of the transistor.
    Type: Grant
    Filed: June 20, 1997
    Date of Patent: December 26, 2000
    Assignee: Intel Corporation
    Inventor: Vivek K. De
  • Patent number: 6157233
    Abstract: In some embodiments, the invention includes a system having a normal operating mode and a suspend mode. The system includes event recognition circuitry to provide an event status signal. The system also includes clock generating circuitry with selective stretching capability to generate an internal clock signal and to receive the event status signal, and wherein when the event status signal has a first logic state, the clock generating circuitry stretches the internal clock signal by a number of phases per cycle of a bus clock signal wherein an alignment relationship between the internal clock signal and the bus clock signal is immediately deterministic in transitions between the suspend mode and the normal operating mode.
    Type: Grant
    Filed: December 16, 1998
    Date of Patent: December 5, 2000
    Assignee: Intel Corporation
    Inventors: John W. Horigan, Rajendra M. Abhyankar
  • Patent number: 6148433
    Abstract: In some embodiments, the invention includes a method of regularity extraction including generating a set of templates for a circuit through computer automated operations on a description of the circuit. The method also includes covering the circuit with instances of a subset of the templates. In some embodiments, the set of templates includes single-principal output templates, where a single-principal output templates is a template in which all outputs of the template are in the transitive fanin of a particular output of the template. The set of templates may also include tree templates. In some embodiments, the set of templates is a complete set of templates given certain assumptions including that the set of templates include all maximal templates of involved classes of templates and a template is not generated through permuting gate inputs.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: November 14, 2000
    Assignee: Intel Corporation
    Inventors: Amit Chowdhary, Sudhakar S. J. Kale, Phani K. Saripella, Naresh K. Sehgal, Rajesh K. Gupta
  • Patent number: 6137319
    Abstract: In some embodiments, the invention includes a reference-free single ended sense amplifier. The sense amplifier includes first and second transistors in a differential pair, the first transistor having a control terminal connected to an input conductor to receive an intermediate signal, the first transistor having a data terminal connected to a node, and the second transistor having a control terminal coupled to the node. The sense amplifier further includes a cross-coupled inverter latch having a first inverter coupled to the first transistor through the node and a second inverter coupled to the second transistor. In some embodiments, the control terminal of the second transistor is tied to the node. The first and second transistors of the differential pair may be pFET transistors or nFET transistors or a combination of them. In some embodiments, the sense amplifier is includes as a part of a domino logic gate. Other embodiments are described and claimed.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: October 24, 2000
    Assignee: Intel Corporation
    Inventors: Ram K. Krishnamurthy, Atila Alvandpour, Reed D. Spotten