Patents Assigned to Amyris, Inc.
  • Publication number: 20130123379
    Abstract: Provided herein are graft copolymers of polyfarnesenes with condensation polymers; and methods of making and using the graft copolymers disclosed herein. The graft copolymers are obtained from the reaction of a polycondensation polymer with a modified polyfarnesene obtained from reaction of a polyfarnesene with a modifier in the presence of a grafting initiator. In certain embodiments, the condensation polymers include polyesters, polycarbonates, polyamides, polyethers, phenol-formaldehyde resins, urea-formaldehyde resins, melamine-formaldehyde resins and combinations thereof. In some embodiments, the polyfarnesenes include farnesene homopolymers derived from a farnesene, and farnesene interpolymers derived from a farnesene and at least a vinyl monomer. In certain embodiments, the farnesene is prepared from a sugar by using a microorganism.
    Type: Application
    Filed: July 29, 2011
    Publication date: May 16, 2013
    Applicant: AMYRIS, INC.
    Inventor: Derek James Mcphee
  • Patent number: 8426639
    Abstract: The present invention relates to the isomerization of cis,cis and/or cis,trans muconic acid or esters thereof to trans,trans muconic acid or esters thereof and to the esterification of such muconic acids.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: April 23, 2013
    Assignee: Amyris, Inc.
    Inventors: John W. Frost, Adeline Miermont, Dirk Schweitzer, Vu Bui
  • Publication number: 20130089914
    Abstract: Provided herein are methods of generating genetically modified microorganisms, e.g., genetically modified yeast strains, which comprise functional disruptions in one or more pheromone response genes and one or more sporulation genes, and genetically modified yeast cells, e.g., genetically modified diploid and haploid yeast cells, that lack sporulation capability and endogenous mating capability, produced thereby.
    Type: Application
    Filed: December 6, 2012
    Publication date: April 11, 2013
    Applicant: AMYRIS, INC.
    Inventor: Amyris, Inc.
  • Patent number: 8415496
    Abstract: The present invention relates to polyesters prepared from benzene, cyclohexene and cyclohexane compounds having carboxylic acid groups at the 1 and 4, and optionally the 2, positions, such as terephthalic acid or dimethyl terephthalates, and alkylene glycols, such ethylene glycol or 1,4-butane diol. The invention also relates to processes for preparing such polyesters. The invention also relates to such polyesters derived from starting materials derived from renewable resources.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: April 9, 2013
    Assignee: Amyris, Inc.
    Inventors: John W. Frost, Adeline Miermont, Dirk Schweitzer, Vu Bui, Edward Paschke, Douglas A. Wicks
  • Patent number: 8415136
    Abstract: Provided herein are compositions and methods for the heterologous production of acetyl-CoA-derived isoprenoids in a host cell. In some embodiments, the host cell is genetically modified to comprise a heterologous nucleotide sequence encoding an acetaldehyde dehydrogenase, acetylating (ADA, E.C. 1.2.1.10) and an MEV pathway comprising an NADH-using HMG-CoA reductase. In some embodiments, the host cell is genetically modified to comprise a heterologous nucleotide sequence encoding an ADA and an MEV pathway comprising an acetoacetyl-CoA synthase. In some embodiments, the genetically modified host cell further comprises one or more heterologous nucleotide sequences encoding a phosphoketolase and a phosphotransacetylase. In some embodiments, the genetically modified host cell further comprises a functional disruption of the native PDH-bypass. The compositions and methods described herein provide an energy-efficient yet redox balanced route for the heterologous production of acetyl-CoA-derived isoprenoids.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: April 9, 2013
    Assignee: Amyris, Inc.
    Inventors: Timothy Stevens Gardner, Kristy Michelle Hawkins, Adam Leon Meadows, Annie Ening Tsong, Yoseph Tsegaye
  • Publication number: 20130085255
    Abstract: Provided herein are processes for preparing caprolactam from a starting material such as one or more of the cis,cis-, cis,trans- and trans,trans-double-bond isomers of muconamide, muconic acid ester, or muconic acid. The starting material, intermediates, and caprolactam prepared therefrom can contain carbon atoms derived from biomass containing detectable 14C content determined according to ASTM D6866 and optionally containing a 14C content up to 0.0000000001% (one part per trillion). Caprolactam so prepared can be used to make various polyamides.
    Type: Application
    Filed: April 9, 2012
    Publication date: April 4, 2013
    Applicant: Amyris, Inc.
    Inventors: Laetitia Coudray, Vu Bui, John W. Frost, Dirk Schweitzer
  • Patent number: 8367858
    Abstract: The present invention relates to novel substituted and unsubstituted terephthalic acid and carboxylate derivatives and products prepared therefrom having a significant renewable content. The invention also relates to processes for preparing substituted and unsubstituted terephthalic and carboxylate derivatives thereof wherein a portion of the starting materials utilized is derived from renewable resources. The invention also relates to novel cyclohexene based intermediates prepared in these processes and to conversion of these intermediates to substituted and unsubstituted cyclohexane-1,4-dicarboxylates and carboxylate derivatives thereof and novel forms of the resulting products having renewable content. The invention also relates to products prepared from substituted and unsubstituted terephthalic acid and carboxylate derivatives thereof derived from starting materials derived from renewable resources.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: February 5, 2013
    Assignee: Amyris, Inc.
    Inventors: John W. Frost, Adeline Miermont, Dirk Schweitzer, Vu Bui, Douglas A. Wicks
  • Patent number: 8367859
    Abstract: The present invention relates to cyclohexanes having carboxylate derivatives at the 1 and 4, and optionally the 2, position. The invention also relates to processes for preparing such compounds wherein a portion of the starting materials utililzed is derived from renewable resources.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: February 5, 2013
    Assignee: Amyris, Inc.
    Inventors: John W. Frost, Adeline Miermont, Dirk Schweitzer, Vu Bui, Douglas A. Wicks
  • Publication number: 20130030227
    Abstract: A method for producing isoprene comprising an aqueous medium including genetically modified host cells capable of producing isoprene, where the resulting isoprene composition is processed through at least one separation and/or purification process to provide an isoprene enriched composition and a system for doing the same.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 31, 2013
    Applicant: AMYRIS, INC.
    Inventor: DEREK MCPHEE
  • Publication number: 20130030215
    Abstract: A method for producing cis,trans- and trans,trans-isomers of muconate by providing cis,cis-muconate produced from a renewable carbon source through biocatalytic conversion; isomerizing cis,cis-muconate to cis,trans-muconate under reaction conditions in which substantially all of the cis,cis-muconate is isomerized to cis,trans-muconate; separating the cis,trans-muconate; and crystallizing the cis,trans-muconate. The cis,trans-isomer can be further isomerized to the trans,trans-isomer. In one example, the method includes culturing recombinant cells that express 3-dehydroshikimate dehydratase, protocatechuate decarboxylase and catechol 1,2-dioxygenase in a medium comprising the renewable carbon source and under conditions in which the renewable carbon source is converted to 3-dehydroshikimate by enzymes in the common pathway of aromatic amino acid biosynthesis of the cell, and the 3-dehydroshikimate is biocatalytically converted to cis,cis-muconate.
    Type: Application
    Filed: January 10, 2011
    Publication date: January 31, 2013
    Applicant: Amyris, Inc.
    Inventors: Vu Bui, Man Kit Lau, Doug MacRae, Dirk Schweitzer
  • Patent number: 8357527
    Abstract: Provided herein are methods of generating genetically modified microorganisms, e.g., genetically modified yeast strains, which comprise functional disruptions in one or more pheromone response genes and one or more sporulation genes, and genetically modified yeast cells, e.g., genetically modified diploid and haploid yeast cells, that lack sporulation capability and endogenous mating capability, produced thereby.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: January 22, 2013
    Assignee: Amyris, Inc.
    Inventor: Jeffrey A. Ubersax
  • Patent number: 8334353
    Abstract: Provided herein are polyfarnesenes such as farnesene homopolymers derived from a farnesene and farnesene interpolymers derived from a farnesene and at least a vinyl monomer; and the processes of making and using the polyfarnesenes. The farnesene homopolymer can be prepared by polymerizing the farnesene in the presence of a catalyst such as a Ziegler-Natta catalyst, a Kaminsky catalyst, a metallocene catalyst, an organolithium reagent or a combination thereof. In some embodiments, the farnesene is prepared from a sugar by using a microorganism.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: December 18, 2012
    Assignee: Amyris, Inc.
    Inventor: Derek James McPhee
  • Patent number: 8324442
    Abstract: A method for producing isoprene comprising an aqueous medium including genetically modified host cells capable of producing isoprene, where the resulting isoprene composition is processed through at least one separation and/or purification process to provide an isoprene enriched composition and a system for doing the same.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: December 4, 2012
    Assignee: Amyris, Inc.
    Inventor: Derek McPhee
  • Patent number: 8314196
    Abstract: Provided herein are polyfarnesenes such as farnesene homopolymers derived from a farnesene and farnesene interpolymers derived from a farnesene and at least a vinyl monomer; and the processes of making and using the polyfarnesenes. The farnesene homopolymer can be prepared by polymerizing the farnesene in the presence of a catalyst. In some embodiments, the farnesene is prepared from a sugar by using a microorganism.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: November 20, 2012
    Assignee: Amyris, Inc.
    Inventor: Derek James McPhee
  • Publication number: 20120288891
    Abstract: The present disclosure relates to the use of pantothenate compounds as a non-genetic switch for the production of heterologous acetyl-CoA derived (HACD) compounds in microbial host cells. The invention provides genetically modified microorganisms that are more stable when stored and initially cultured under reduced pantothenate concentrations, cell culture media having reduced concentrations of pantothenate compounds, and methods of producing HACD compounds using the cell culture media and the genetically engineered microorganisms of the invention.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 15, 2012
    Applicant: AMYRIS, INC.
    Inventor: Adam Meadows
  • Publication number: 20120277120
    Abstract: Provided herein are methods of integrating one or more exogenous nucleic acids into one or more selected target sites of a host cell genome. In certain embodiments, the methods comprise contacting the host cell genome with one or more integration polynucleotides comprising an exogenous nucleic acid to be integrated into a genomic target site, and a nuclease capable of causing a double-strand break near or within the genomic target site.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 1, 2012
    Applicant: AMYRIS, INC.
    Inventors: Zach Serber, Andrew Horwitz
  • Publication number: 20120270260
    Abstract: The present disclosure relates to methods of developing terpene synthase variants through engineered host cells. Particularly, the disclosure provides methods of developing terpene synthase variants with improved in vivo performance that are useful in the commercial production of terpene products. Further encompassed in the present disclosure are superior terpene synthase variants and host cells comprising such terpene synthase variants.
    Type: Application
    Filed: July 5, 2012
    Publication date: October 25, 2012
    Applicant: AMYRIS, INC.
    Inventors: Lishan Zhao, Lan Xu, Patrick Westfall, Andrew Main
  • Publication number: 20120245056
    Abstract: The present invention provides compositions and methods for rapid assembly of one or more assembled polynucleotides from a plurality of component polynucleotides. The methods of the invention utilize circular nucleic acid vectors that comprise a DNA segment D flanked by an annealable linker sequence, annealable linker sequence pairs LA and LB, or annealable linker sequence/primer binding segment pairs LA and PB or PA and LB. Restriction endonuclease digestion of a plurality of vectors containing the DNA segments to be assembled generates a plurality of DNA fragments comprising the elements PA-D-LB, LA-D-LB, and LA-D-PB or D-LB, LA-D-LB, and LA-D. The sequences of annealable linker sequences LA and LB provide complementary termini to the DNA fragments, which are utilized in host cell mediated homologous recombination or together with promer binding segments PA and PB in a polymerase cycling assembly reaction for the ordered assembly of the various DNA segments into one or more assembled polynucleotides.
    Type: Application
    Filed: March 26, 2012
    Publication date: September 27, 2012
    Applicant: Amyris, Inc.
    Inventors: Zach Serber, Raymond Lowe, Jeffrey A. Ubersax, Sunil S. Chandran
  • Publication number: 20120244304
    Abstract: Farnesene interpolymer comprises units derived from a farnesene (e.g., ?-farnesene or ?-farnesene) and units derived from at least one vinyl monomer. The farnesene interpolymer can be prepared by copolymerizing the farnesene and at least one vinyl monomer in the presence of a catalyst. In some embodiments, the farnesene is prepared from a sugar by using a microorganism. In other embodiments, the at least one vinyl monomer is ethylene, an ?-olefin, or a substituted or unsubstituted vinyl halide, vinyl ether, acrylonitrile, acrylic ester, methacrylic ester, acrylamide or methacrylamide, or a combination thereof.
    Type: Application
    Filed: May 25, 2012
    Publication date: September 27, 2012
    Applicant: Amyris, Inc.
    Inventor: Derek James MCPHEE
  • Patent number: 8236512
    Abstract: The present disclosure relates to methods of developing terpene synthase variants through engineered host cells. Particularly, the disclosure provides methods of developing terpene synthase variants with improved in vivo performance that are useful in the commercial production of terpene products. Further encompassed in the present disclosure are superior terpene synthase variants and host cells comprising such terpene synthase variants.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: August 7, 2012
    Assignee: Amyris, Inc.
    Inventors: Lishan Zhao, Lan Xu, Patrick Westfall, Andrew Main