Patents Assigned to Crossbar, Inc.
  • Patent number: 11270767
    Abstract: A non-volatile memory device having processing logic embedded within a memory bank of the non-volatile memory device is disclosed herein. By way of example, commands for controlling the processing logic can be exposed to a host device, enabling the host device to activate processing capacity of the memory bank in conjunction with a memory operation. The processing capacity can be directed by a data command, transmitted by the host device, at read or write data identified by the memory operation. Read data can be processed by the memory bank before being output onto a data interface connected to the memory bank. Likewise, write data received at the memory bank can be processed in conjunction with storing the write data in the non-volatile memory device. A disclose memory device can therefore implement internal processing in conjunction with reading or writing data to a memory device comprising respective banks of two-terminal non-volatile memory.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: March 8, 2022
    Assignee: Crossbar, Inc.
    Inventor: Mehdi Asnaashari
  • Patent number: 11227654
    Abstract: A semiconductor device includes memory devices respectively comprising a selector transistor in series with a control transistor and a memory cell, wherein the control transistor is connected to the memory cell. Control lines of the semiconductor device extend along a first direction, and a first control line is connected to a first memory device control transistor and a second memory device control transistor. Word lines extend in the first direction, and a first word line is connected to a first memory device selector transistor and a second memory device selector transistor. Bitlines extend in a second direction, with a first bitline connected to a first memory device memory cell and a second bitline is connected to a second memory device memory cell. Source lines extend in the second direction, and a first source line is connected to the first memory device selector transistor and the second memory device selector transistor.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: January 18, 2022
    Assignee: Crossbar, Inc.
    Inventor: Hagop Nazarian
  • Patent number: 11222696
    Abstract: Provided herein is a computing memory architecture. The non-volatile memory architecture can comprise a resistive random access memory array comprising multiple sets of bitlines and multiple wordlines, a first data interface for receiving data from an external device and for outputting data to the external device, and a second data interface for outputting data to the external device. The non-volatile memory architecture can also comprise programmable processing elements connected to respective sets of the multiple sets of bitlines of the resistive random access memory array, and connected to the data interface. The programmable processing elements are configured to receive stored data from the resistive random access memory array via the respective sets of bitlines or to receive external data from the external device via the data interface, and execute a logical or mathematical algorithm on the external data or the stored data and generate processed data.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: January 11, 2022
    Assignee: Crossbar, Inc.
    Inventors: Mehdi Asnaashari, Hagop Nazarian, Christophe Sucur, Sylvain Dubois
  • Patent number: 11126550
    Abstract: Disclosed is a monolithic integrated circuit (IC) computing device with multiple independent process cores (multicore) and embedded, non-volatile resistive memory serving as system memory. The resistive system memory is fabricated above the substrate, and logic circuits embodying the process cores are fabricated on the substrate. In addition, access circuitry for operating on the resistive system memory, and circuitry embodying memory controllers, routing devices and other logic components is provided at least in part on the substrate. Large main memory capacities of tens or hundreds of gigabytes (GB) are provided and operable with many process cores, all on a single die. This monolithic integration provides close physical proximity between the process cores and main memory, facilitating significant memory parallelism, reduced power consumption, and eliminating off-chip main memory access requests.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: September 21, 2021
    Assignee: Crossbar, Inc
    Inventors: Donald Yeung, Bruce L. Jacob, Mehdi Asnaashari, Sylvain Dubois
  • Patent number: 11127460
    Abstract: Provided herein resistive random access memory matrix multiplication structures and methods. A non-volatile memory logic system can comprise a bit line and at a set of wordlines. Also included can be a set of resistive switching memory cells at respective intersections between the bit line and the set of wordlines. The set of resistive switching memory cells are programmed with a value of an input data bit of a first data matrix and receive respective currents on the set of wordlines. The respective currents comprise respective values of an activation data bit of a second data matrix. A resulting value based on a matrix multiplication corresponds to an output value of the bit line.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: September 21, 2021
    Assignee: Crossbar, Inc.
    Inventors: Mehdi Asnaashari, Hagop Nazarian, Christophe Sucur, Sylvain Dubois
  • Patent number: 11068620
    Abstract: An example secure circuit device includes a logic layer with a logic circuit, first and second memory layers, and connectors between the logic layer and the memory layers. The logic circuit executes logic operations in response to being in an unlocked state and does not execute logic operations in response to being in a locked state. The logic circuit is in the unlocked state in response to a security key being accessible and in the locked state when the security key is inaccessible. The first memory layer is disposed over a second memory layer with the first and second memory layers being disposed over the logic layer in a monolithic structure. The security key includes a first security key portion disposed in the first memory layer and a second security key portion disposed in the second memory layer.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: July 20, 2021
    Assignee: CROSSBAR, INC.
    Inventor: George Minassian
  • Patent number: 10998064
    Abstract: A method for erasing a memory cell includes applying a first erase to memory cells to erase the memory cells, wherein first memory cells are in a weakly erased state in response to the first erase, and wherein second memory cells are in a normally erased state in response to the first erase, thereafter applying a first weak program to the memory cells, wherein the second memory cells enter a programmed state and the third memory cells remain in the erased state in response to the first weak program, and thereafter applying a read to the memory cells to identify the second memory cells, and applying a second erase to the second memory cells to thereby erase the second memory cells.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: May 4, 2021
    Assignee: Crossbar, Inc.
    Inventors: Jeremy Guy, Sung Hyun Jo, Hagop Nazarian, Ruchirkumar Shah, Liang Zhao
  • Patent number: 10964388
    Abstract: Solid-state memory having a non-linear current-voltage (I-V) response is provided. By way of example, the solid-state memory can be a selector device. The selector device can be formed in series with a non-volatile memory device via a monolithic fabrication process. Further, the selector device can provide a substantially non-linear I-V response suitable to mitigate leakage current for the non-volatile memory device. In various disclosed embodiments, the series combination of the selector device and the non-volatile memory device can serve as one of a set of memory cells in a 1-transistor, many-resistor resistive memory cell array.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: March 30, 2021
    Assignee: CROSSBAR, INC.
    Inventor: Sung Hyun Jo
  • Patent number: 10957410
    Abstract: A method for facilitating erase or program operations on two-terminal memory devices includes substantially simultaneously initiating erase cycle or program cycle for two-terminal memory devices from a first plurality of two-terminal memory devices, monitoring erase detect or program detect conditions for each of the two-terminal memory devices, and before detecting erase detect or program detect conditions for all of the two-terminal memory devices, the method includes detecting an erase detect or a program detect condition for the first two-terminal memory device from the first plurality of two-terminal memory devices, and initiating an erase cycle or a program for a second two-terminal memory device for a second plurality of two-terminal memory devices, in response to detecting the erase detect or program detect condition for the first two-terminal memory device.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: March 23, 2021
    Assignee: Crossbar, Inc.
    Inventors: Hagop Nazarian, Sang Nguyen
  • Patent number: 10910561
    Abstract: Providing for two-terminal memory that mitigates diffusion of external material therein is described herein. In some embodiments, a two-terminal memory cell can comprise an electrode layer. The electrode layer can be at least in part permeable to ionically or chemically reactive material, such as oxygen or the like. The two-terminal memory can further comprise a diffusion mitigation material disposed between the electrode layer and external material. This diffusion mitigation material can be selected to mitigate or prevent diffusion of the undesired element(s) or compound(s), to mitigate or avoid exposure of such element(s) or compound(s) to the electrode layer. Accordingly, degradation of the two-terminal memory as a result of contact with the undesired element(s) or compound(s) can be mitigated by various disclosed embodiments.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: February 2, 2021
    Assignee: CROSSBAR, INC.
    Inventors: Steven Patrick Maxwell, Sung Hyun Jo
  • Patent number: 10873023
    Abstract: A two-terminal resistive switching device (TTRSD) such as a non-volatile two-terminal memory device or a volatile two-terminal selector device can be formed according to a manufacturing process. The process can include forming an etch stop layer that is made of aluminum and can include forming a buffer layer below the etch stop layer and/or between the etch stop layer and a top electrode of the TTRSD.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: December 22, 2020
    Assignee: Crossbar, Inc.
    Inventors: Sundar Narayanan, Natividad Vasquez, Zhen Gu, Yunyu Wang
  • Patent number: 10847579
    Abstract: A logical NAND memory architecture comprising two-terminal, non-volatile resistive memory is disclosed. By way of example, disclosed logical NAND architectures can comprise non-volatile memory cells having approximately 4 F2 area. This facilitates very high memory densities, even for advanced technology nodes. Further, the disclosed architectures are CMOS compatible, and can be constructed among back-end-of-line (BEOL) metal layers of an integrated chip. In some embodiments, subsets of two-terminal memory cells in a NAND array can be constructed between different pairs of BEOL metal layers. In other embodiments, the two-terminal memory cells can be constructed between a single pair of BEOL metal layers.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: November 24, 2020
    Assignee: Crossbar, Inc.
    Inventors: Hagop Nazarian, Harry Yue Gee
  • Patent number: 10840442
    Abstract: Providing for a resistive switching memory device is described herein. By way of example, the resistive switching memory device can comprise a bottom electrode, a conductive layer, a resistive switching layer, and a top electrode. Further, two or more layers can be selected to mitigate mechanical stress on the device. In various embodiments, the resistive switching layer and conductive layer can be formed of compatible metal nitride or metal oxide materials having different nitride/oxide concentrations and different electrical resistances. Further, similar materials can mitigate mechanical stress on the resistive switching layer and a conductive filament of the resistive switching memory device.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: November 17, 2020
    Assignee: Crossbar, Inc.
    Inventor: Sung Hyun Jo
  • Patent number: 10796751
    Abstract: A detection circuit that can detect a two-terminal memory cell changing state. For example, in response to electrical stimuli, a memory cell will change state, e.g., to a defined higher resistance state or a defined lower resistance state. Other, techniques do not detect this state change until after the stimuli is completed and a subsequent sensing operation (e.g., read pulse) is performed. The detection circuit can detect the state change during application of the electrical stimuli that cause the state change and can do so by comparing the magnitudes or values of two particular current parameters.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: October 6, 2020
    Assignee: CROSSBAR, INC.
    Inventors: Sang Nguyen, Hagop Nazarian, Tianhong Yan
  • Patent number: 10749110
    Abstract: Two-terminal memory devices can be formed in dielectric material that is electrically insulating and operates as a blocking layer to mitigate diffusion of material from a metal layer. A stack of layers of the two-terminal memory device can be covered with a liner layer that can comprise the dielectric material. Thus, in some implementations, the liner layer and the blocking layer can have a similar etch rate.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: August 18, 2020
    Assignee: Crossbar, Inc.
    Inventors: Sundar Narayanan, Zhen Gu, Natividad Vasquez
  • Patent number: 10749529
    Abstract: Various embodiments of the present disclosure provide for a memory device having inline processing circuitry. Disclosed memory devices can comprise logic circuits incorporating pattern recognition algorithms, in an embodiment. Comparative analysis functions on sets of data can be implemented with pulldown circuits connected to a common data line. In some embodiments, minimum values, maximum values and the like can be determined among the sets of data in a number of clock cycles comparable to a number of bits in the sets of data.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: August 18, 2020
    Assignee: Crossbar, Inc.
    Inventor: Mehdi Asnaashari
  • Patent number: 10699785
    Abstract: Provided herein is a computing memory architecture. The non-volatile memory architecture can comprise a resistive random access memory array comprising multiple sets of bitlines and multiple wordlines, a first data interface for receiving data from an external device and for outputting data to the external device, and a second data interface for outputting data to the external device. The non-volatile memory architecture can also comprise programmable processing elements connected to respective sets of the multiple sets of bitlines of the resistive random access memory array, and connected to the data interface. The programmable processing elements are configured to receive stored data from the resistive random access memory array via the respective sets of bitlines or to receive external data from the external device via the data interface, and execute a logical or mathematical algorithm on the external data or the stored data and generate processed data.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: June 30, 2020
    Assignee: CROSSBAR, INC.
    Inventors: Mehdi Asnaashari, Hagop Nazarian, Christophe Sucur, Sylvain Dubois
  • Patent number: 10693062
    Abstract: Provision of fabrication, construction, and/or assembly of a two-terminal memory device is described herein. The two-terminal memory device can include an active region with a silicon bearing layer, an interface layer, and an active metal layer. The interface layer can be grown on the silicon bearing layer, and the growth of the interface layer can be regulated with N2O plasma.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: June 23, 2020
    Assignee: Crossbar, Inc.
    Inventors: Sundar Narayanan, Sung Hyun Jo, Liang Zhao
  • Patent number: 10658033
    Abstract: A non-volatile memory device is provided that uses one or more volatile elements. In some embodiments, the non-volatile memory device can include a resistive two-terminal selector that can be in a low resistive state or a high resistive state depending on the voltage being applied. A MOS (“metal-oxide-semiconductor”) transistor in addition to a capacitor or transistor acting as a capacitor can also be included. A first terminal of the capacitor can be connected to a voltage source, and the second terminal of the capacitor can be connected to the selector device. A floating gate of an NMOS transistor can be connected to the other side of the selector device, and a second NMOS transistor can be connected in series with the first NMOS transistor.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: May 19, 2020
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Sung Hyun Jo
  • Patent number: 10608180
    Abstract: Providing for a two-terminal memory cell having intrinsic current limiting characteristic is described herein. By way of example, the two-terminal memory cell can comprise a particle donor layer having a moderate resistivity, comprised of unstable or partially unstable metal compounds. The metal compounds can be selected to release metal atoms in response to an external stimulus (e.g., an electric field, a voltage, a current, heat, etc.) into an electrically-resistive switching medium, which is at least in part permeable to drift or diffusion of the metal atoms. The metal atoms form a thin filament through the switching medium, switching the memory cell to a conductive state. The moderate resistivity of the particle donor layer in conjunction with the thin filament can result in an intrinsic resistance to current through the memory cell at voltages above a restriction voltage, protecting the memory cell from excessive current.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: March 31, 2020
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Xianliang Liu, Xu Zhao, Zeying Ren, FNU Atiquzzaman, Joanna Bettinger, Fengchiao Joyce Lin