Patents Assigned to Efficient Power Conversion Corporation
  • Patent number: 10790811
    Abstract: A cascaded bootstrapping gate driver configured to provide quick turn-on of a high side power FET and low static current consumption. The cascaded bootstrapping gate driver includes an initial bootstrapping stage with a resistor to decrease static current consumption during transistor turn-off. A secondary bootstrapping stage is driven by the initial bootstrapping stage and includes a GaN FET transistor with a low on resistance in place of the resistor. The source terminal of the GaN FET transistor provides a gate driving voltage to the high side power switch FET. The low on-resistance of the GaN FET transistor provides quick turn-on of the high side power FET. Transistors in the cascaded bootstrapping gate driver are preferably enhancement mode GaN FETs and may be integrated into a single semiconductor die.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: September 29, 2020
    Assignee: Efficient Power Conversion Corporation
    Inventors: Edward Lee, Ravi Ananth, Michael Chapman, Michael A. de Rooij, Robert Beach
  • Patent number: 10784794
    Abstract: A power converter in which two power FETs are provided in a full bridge arrangement with two diodes for supplying a rectified voltage to a load. The gates of the power FETs receive alternating and opposite voltage waveforms such that the power FETs conduct oppositely to each other. A turn-off FET is connected to the gate of each power FET to prevent spurious turn on of the power FET during periods in which the opposite power FET is turned on. A voltage sense FET is also connected to the gate of each power FET to limit the gate voltage of the power FET. The voltage sense FETs are each synchronously modulated with the corresponding power FET to limit the gate to source voltage of the voltage sense FET when the corresponding turn-off FET is on and the corresponding power FET is off.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: September 22, 2020
    Assignee: Efficient Power Conversion Corporation
    Inventor: Michael A. de Rooij
  • Patent number: 10749514
    Abstract: A circuit for providing an adjustable output driver current for use in LiDAR or other similar GaN driver applications. The circuit creates an appropriate gate-to-source voltage, VGS, for a high-current GaN driver FET to obtain a desired, high slew-rate driver current, IDRV. An externally provided reference current is used to create the required VGS for the driver FET, which is stored on an external capacitor. The value of the capacitor far exceeds the relatively low input-capacitance of the GaN driver FET. When a pulse IDRV of desired value is needed, the voltage on the capacitor is impinged upon the gate of the driver FET, thereby creating the desired IDRV. The reference charging circuit replenishes any charge lost on the capacitor, so that the same desired IDRV can be obtained on the next command pulse.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: August 18, 2020
    Assignee: Efficient Power Conversion Corporation
    Inventors: Edward Lee, Ravi Ananth, Michael Chapman, John S. Glaser, Stephen L. Colino
  • Patent number: 10727834
    Abstract: A direct-coupled level shifter to level shift a ground referenced input logic signal to an output logic signal that can have either a positive or negative reference. The level shifter includes two level shift drivers, each of which includes a positive level shift driver and a negative level shift driver. The positive level shift drivers operate when the reference of the latch is above ground and turn off when the reference is below ground. Similarly, the negative level shift drivers operate when the reference is below ground and turn off when the reference is above ground. The output logic signal is based on the output from the positive level shift driver receiving the input signal and the output from the negative level shift driver receiving an inverse of the input signal. The inverse of the output logic signal is based on the output from the positive level shift driver receiving an inverse of the input signal and the output from the negative level shift driver receiving the input signal.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: July 28, 2020
    Assignee: Efficient Power Conversion Corporation
    Inventors: Edward Lee, Ravi Ananth, Michael Chapman
  • Patent number: 10680589
    Abstract: A driver shutdown circuit configured to trigger driver shutdown based on the magnitude and duration of the driving current. A first GaN FET is connected to a second GaN FET and an input node and generates a discharging current proportional to the driving current. The discharging current is drawn from a timer capacitor through the first and second GaN FETs. The second GaN FET receives a control signal and stops flow of the discharging current in between driver pulses so a pre-charger circuit can recharge the timer capacitor to a particular voltage. The discharging current drains the timer capacitor, and a shutdown signal generator outputs a shutdown signal to the driver in response to the voltage on the timer capacitor decreasing below a triggering voltage.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: June 9, 2020
    Assignee: Efficient Power Conversion Corporation
    Inventors: Edward Lee, Ravi Ananth, Michael Chapman
  • Patent number: 10637456
    Abstract: A cascaded synchronous bootstrap supply circuit with reduced voltage drop between the cascaded bootstrap capacitors by replacing bootstrap diodes with gallium nitride (GaN) transistors. GaN transistors have a much lower forward voltage drop than diodes, thus providing a cascaded gate driver bootstrap supply circuit with a reduced drop in bootstrap capacitor voltage, which is particularly important as the number of levels increases.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: April 28, 2020
    Assignee: Efficient Power Conversion Corporation
    Inventors: David C. Reusch, Suvankar Biswas, Michael A. de Rooij
  • Patent number: 10622455
    Abstract: An enhancement-mode transistor gate structure which includes a spacer layer of GaN disposed above a barrier layer, a first layer of pGaN above the spacer layer, an etch stop layer of p-type Al-containing column III-V material, for example, pAlGaN or pAlInGaN, disposed above the first p-GaN layer, and a second p-GaN layer, having a greater thickness than the first p-GaN layer, disposed over the etch stop layer. The etch stop layer minimizes damage to the underlying barrier layer during gate etching steps, and improves GaN spacer thickness uniformity.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: April 14, 2020
    Assignee: Efficient Power Conversion Corporation
    Inventors: Jianjun Cao, Robert Beach, Guangyuan Zhao, Yoganand Saripalli, Zhikai Tang
  • Patent number: 10601300
    Abstract: An integrated DC-DC converter device includes a plurality of GaN transistor sets. A first set of the plurality of GaN transistor sets includes transistors with a first drain-to-source distance, and wherein a second of the plurality of GaN transistor sets includes transistors with a second drain-to-source distance that is greater than the first drain-to-source distance.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: March 24, 2020
    Assignee: Efficient Power Conversion Corporation
    Inventors: David C. Reusch, Jianjun Cao, Alexander Lidow
  • Patent number: 10600674
    Abstract: Circuits, structures and techniques for independently connecting a surrounding material in a part of a semiconductor device to a contact of its respective device. To achieve this, a combination of one or more conductive wells that are electrically isolated in at least one bias polarity are provided.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: March 24, 2020
    Assignee: Efficient Power Conversion Corporation
    Inventors: Alexander Lidow, Jianjun Cao, Robert Beach, Johan T. Strydom, Alana Nakata, Guangyuan Zhao
  • Patent number: 10454472
    Abstract: A drive circuit for a half bridge transistor circuit formed of enhancement mode GaN transistors. A shunt diode is connected to the bootstrap capacitor at a node between the bootstrap capacitor and ground, the shunt diode being decoupled from the midpoint node of the half bridge by a shunt resistor. The shunt diode advantageously provides a low voltage drop path to charge the bootstrap capacitor during the dead-time charging period when both the high side and low side transistors of the half bridge are off.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: October 22, 2019
    Assignee: Efficient Power Conversion Corporation
    Inventors: David C. Reusch, John Glaser, Michael A. de Rooij
  • Patent number: 10312335
    Abstract: An enhancement-mode GaN transistor with reduced gate leakage current between a gate contact and a 2DEG region and a method for manufacturing the same. The enhancement-mode GaN transistor including a GaN layer, a barrier layer disposed on the GaN layer with a 2DEG region formed at an interface between the GaN layer and the barrier layer, and source contact and drain contacts disposed on the barrier layer. The GaN transistor further includes a p-type gate material formed above the barrier layer and between the source and drain contacts and a gate metal disposed on the p-type gate material, with wherein the p-type gate material including comprises a pair of self-aligned ledges that extend toward the source contact and drain contact, respectively.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: June 4, 2019
    Assignee: Efficient Power Conversion Corporation
    Inventors: Jianjun Cao, Alexander Lidow, Alana Nakata
  • Patent number: 10312260
    Abstract: A GaN transistor with polysilicon layers for creating additional components for an integrated circuit and a method for manufacturing the same. The GaN device includes an EPI structure and an insulating material disposed over EPI structure. Furthermore, one or more polysilicon layers are disposed in the insulating material with the polysilicon layers having one or more n-type regions and p-type regions. The device further includes metal interconnects disposed on the insulating material and vias disposed in the insulating material layer that connect source and drain metals to the n-type and p-type regions of the polysilicon layer.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: June 4, 2019
    Assignee: Efficient Power Conversion Corporation
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. de Rooij, Chunhua Zhou, Seshadri Kolluri, Fang-Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Patent number: 10243546
    Abstract: A fully integrated GaN driver comprising a digital logic signal inverter, a level shifter circuit, a UVLO circuit, an output buffer stage, and (optionally) a FET to be driven, all integrated in a single package. The level shifter circuit converts a ground reference 0-5 V digital signal at the input to a 0-10 V digital signal at the output. The output drive circuitry includes a high side GaN FET that is inverted compared to the low side GaN FET. The inverted high side GaN FET allows switch operation, rather than a source follower topology, thus providing a digital voltage to control the main FET being driven by the circuit.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: March 26, 2019
    Assignee: Efficient Power Conversion Corporation
    Inventors: Michael A. de Rooij, David C. Reusch, Suvankar Biswas
  • Patent number: 10230341
    Abstract: A high efficiency voltage mode class D amplifier and energy transfer system is provided. The amplifier and system includes a pair of transistors connected in series between a voltage source and a ground connection. Further, a ramp current tank circuit is coupled in parallel with one of the pair of transistors and a resonant tuned load circuit is coupled to the ramp current tank circuit. The ramp current tank circuit can include an inductor that absorbs an output capacitance COSS of the pair of transistors and a capacitor the provides DC blocking.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: March 12, 2019
    Assignee: Efficient Power Conversion Corporation
    Inventors: Michael A. de Rooij, Johan T. Strydom, Bhaskaran R. Nair
  • Patent number: 10218353
    Abstract: A circuit for an RF switch using FET transistors that largely cancels the non-linearity of the Coss of the FETs over a majority of the signal range, and reduces distortion. The RF switch includes two substantially identical FETs. The source of one FET is connected to the drain of the other FET and the node formed comprises one terminal of the switch. Two substantially identical capacitors are connected in series with each other and in parallel with the FETs, and the node thus formed comprises the second terminal of the switch. The capacitors are selected such that they have negligible impedance at AC frequencies for which the switch is expected be used, and in particular a much lower impedance than Coss of each FET. A voltage source with a series impedance is also connected in parallel with the capacitors and the two FETs.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: February 26, 2019
    Assignee: Efficient Power Conversion Corporation
    Inventors: John S. Glaser, David C. Reusch, Michael A. de Rooij
  • Patent number: 10096702
    Abstract: A gallium nitride (GaN) transistor which includes two or more insulator semiconductor interface regions (insulators). A first insulator disposed between the gate and drain (near the gate) minimizes the gate leakage and fields near the gate that cause high gate-drain charge (Qgd). A second insulator (or multiple insulators), disposed between the first insulator and the drain, minimizes electric fields at the drain contact and provides a high density of charge in the channel for low on-resistance.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: October 9, 2018
    Assignee: Efficient Power Conversion Corporation
    Inventors: Robert Beach, Robert Strittmatter, Chunhua Zhou, Guangyuan Zhao, Jianjun Cao
  • Patent number: 10090274
    Abstract: A method and system for electrically connect a semiconductor device with a flip-chip form factor to a printed circuit board. An exemplary embodiment of the method comprises: aligning solder contacts on the device with a first copper contact and a second copper contact of the external circuitry, and, applying a supply current only directly to a buried layer of the first copper and not directly to the layer which is nearest the device, such that no current is sourced to the device through the layer nearest the device.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: October 2, 2018
    Assignee: Efficient Power Conversion Corporation
    Inventors: Robert Strittmatter, Seshadri Kolluri, Robert Beach, Jianjun Cao, Alana Nakata
  • Patent number: 10084445
    Abstract: An electrical circuit arranged in a half bridge topology. The electrical circuit includes a high side transistor; a low side transistor; a gate driver and level shifter electrically coupled to a gate of the high side transistor; a gate driver electrically coupled to a gate of the low side transistor; a capacitor electrically coupled in parallel with the gate driver and level shifter; a voltage source electrically coupled to an input of the gate driver and level shifter and an input of the gate driver; and, a bootstrap transistor electrically coupled between the voltage source and the capacitor. A GaN field-effect transistor is synchronously switched with a low side device of the half bridge circuit.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: September 25, 2018
    Assignee: Efficient Power Conversion Corporation
    Inventors: Michael A. de Rooij, Johan T. Strydom, David C. Reusch
  • Patent number: 9887677
    Abstract: A high efficiency voltage mode class D amplifier and energy transfer system is provided. The amplifier and system includes a pair of transistors connected in series between a voltage source and a ground connection. Further, a ramp current tank circuit is coupled in parallel with one of the pair of transistors and a resonant tuned load circuit is coupled to the ramp current tank circuit. The ramp current tank circuit can include an inductor that absorbs an output capacitance COSS of the pair of transistors and a capacitor the provides DC blocking.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: February 6, 2018
    Assignee: Efficient Power Conversion Corporation
    Inventors: Michael A. de Rooij, Johan T. Strydom, Bhaskaran R. Nair
  • Patent number: 9837438
    Abstract: A GaN transistor with polysilicon layers for creating additional components for an integrated circuit and a method for manufacturing the same. The GaN device includes an EPI structure and an insulating material disposed over EPI structure. Furthermore, one or more polysilicon layers are disposed in the insulating material with the polysilicon layers having one or more n-type regions and p-type regions. The device further includes metal interconnects disposed on the insulating material and vias disposed in the insulating material layer that connect source and drain metals to the n-type and p-type regions of the polysilicon layer.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: December 5, 2017
    Assignee: Efficient Power Conversion Corporation
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. De Rooij, Chunhua Zhou, Seshadri Kolluri, Fang-Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar