Patents Assigned to Elenion Technologies, LLC
  • Patent number: 10989874
    Abstract: When routing light on photonic integrated circuit (PIC) chips optical back-reflection and scattering can be highly detrimental to the desired application. Unused ports of optical devices, such as MMI, DC, Y-junction, PD, etc. are a cause for back-reflection and scattering, whereby the scattered light could get picked up by adjacent components, e.g. photodetectors. Management of stray light on the PIC is needed to prevent the undesired coupling between various components and to reduce noise. A dump taper may be used to guide and scatter stray light away from sensitive components or fully absorb the light while maintaining very low reflection from the taper. A doped dump taper may be used to passively absorb light reaching the unused port, thereby eliminating unwanted reflection and scattering. Alternatively, an undoped taper may be used to scatter light away from sensitive components while maintaining very low back-reflection.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: April 27, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Yang Liu, Ruizhi Shi, Tal Galfsky
  • Patent number: 10958230
    Abstract: In optical receivers, extending the transimpedance amplifier's (TIA) dynamic range is a key to increasing the receiver's dynamic range, and therefore increase the channel capacity. Ideally, the TIA requires controllable gain, whereby the receiver can modify the characteristics of the TIA and/or the VGA to process high power incoming signals with a defined maximum distortion, and low power incoming signals with a defined maximum noise. A solution to the problem is to provide TIA's and VGA's with reconfigurable sizes, which are adjustable based on the level of power, e.g. current, generated by the photodetector.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: March 23, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Patent number: 10955691
    Abstract: Within a modulator driver, different blocks are employed, e.g. a buffer, one or more variable gain amplifiers (VGA), and a final driver stage. Each of these blocks has an optimum bias point for best performance; however, interconnecting the blocks requires sharing the DC bias points in their interface, which does not necessarily match the optimum performance bias point of each block. Accordingly, a first offset feedback loop extending from reference points after a selected one of the blocks to an input of one of the blocks. The first offset feedback loop includes current sources capable of delivering a variable current to the input of the selected block in order to compensate any offset in an amplified differential input electrical signal measured at the reference points. A first bias feedback loop is also provided, including a current sinker for subtracting excess current introduced in the first offset compensation feedback loop.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: March 23, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Daihyun Lim, Alexander Rylyakov
  • Patent number: 10942314
    Abstract: Disclosed herein are a photonic integrated circuit (PIC) including an edge coupler (EC) and method thereof. In some embodiments, the EC is optically coupled to a first waveguide at an inner end of the EC. In some embodiments, the PIC is in contact with an optical fiber at an outer end of the EC. The EC may include a plurality of waveguide cores located on a plurality of waveguide layers. The waveguide cores of the plurality of waveguide cores are located apart from each other and configured to adapt a mode size of a beam of light between a larger mode size at the outer end of the EC and a smaller mode size at the inner end of the EC.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: March 9, 2021
    Assignee: Elenion Technologies, LLC
    Inventor: Alexandre Horth
  • Patent number: 10944482
    Abstract: A coherent optical receiver for AM optical signals has a photonic integrated circuit (PIC) as an optical front-end. The PIC includes a polarization beam splitter followed by two optical hybrids each followed by an opto-electric (OE) converter. Each OE converter includes one or more differential detectors and one or more squaring circuits, which outputs may be summed. The PIC may further include integrated polarization controllers, wavelength demultiplexers, and/or tunable dispersion compensators.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: March 9, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Richard C. Younce, Alexander Rylyakov, Michael J. Hochberg
  • Patent number: 10942315
    Abstract: The back reflection in photodiodes is caused by an abrupt index contrast between the input waveguide and the composite waveguide/light absorbing material. In order to improve the back reflection, it is proposed to introduce an angle between the waveguide and the leading edge of the light absorbing material. The angle will result in gradually changing the effective index between the index of the waveguide and the index of the composite section, and consequently lower the amount of light reflecting back.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: March 9, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Saeed Fathololoumi, Yang Liu, Yaojia Chen
  • Patent number: 10944486
    Abstract: In high data rate receivers, comprising a photodetector (PD) and a transimpedance amplifier (TIA), a transmitted optical signal typically has poor extinction ratio, which translates into a small modulated current with a large DC current at the output of the PD. The large DC current saturates the TIA, which significantly degrades the gain and bandwidth performance. Accordingly, cancelling photo diode DC current in high data rate receivers is important for proper receiver operation. A DC current cancellation loop, comprising a low pass filter section and a trans-conductance cell (GM) are connected to the input of the TIA. PD DC current IDC is drawn from the input node of the TIA in the GM cell, such that the cancellation loop maintains the DC voltage value of the TIA input node to be the same as a reference voltage (VREF).
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: March 9, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Mostafa Ahmed, Alexander Rylyakov
  • Patent number: 10931381
    Abstract: In optical receivers, cancelling the DC component of the incoming current is a key to increasing the receiver's effectiveness, and therefore increase the channel capacity. Ideally, the receiver includes a DC cancellation circuit for removing the DC component; however, in differential receivers an offset may be created between the output voltage components caused by the various amplifiers. Accordingly, an offset cancellation circuit is required to determine the offset and to modify the DC cancellation circuit accordingly.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: February 23, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Patent number: 10928593
    Abstract: In order to bond an opto-electronic device with fiber pigtails to a larger PCB, the fibers need to be secured in place so that they don't become entangled in the bonding elements resulting in misalignment of the electronic connectors and of the optics. Accordingly, there is a need for packaged parts, which enables customers to use their own surface mount technology (SMT) bonding process without the fiber pigtails interfering with the process. Ideally, the fiber holder device is disposable and provides a spool and a fiber track to guide the fibers from the package to the spool. Ideally, an opening is provided through the spool to enable the components on the opto-electronic device to be accessed.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: February 23, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Ari Jason Novack, Amir Hanjani, Anna Mikami
  • Patent number: 10908439
    Abstract: A novel phase shifter design for carrier depletion based silicon modulators, based on an experimentally validated model, is described. It is believed that the heretofore neglected effect of incomplete ionization will have a significant impact on ultra-responsive phase shifters. A low V?L product of 0.3 V·cm associated with a low propagation loss of 20 dB/cm is expected to be observed. The phase shifter is based on overlapping implantation steps, where the doses and energies are carefully chosen to utilize counter-doping to produce an S-shaped junction. This junction has a particularly attractive V?L figure of merit, while simultaneously achieving attractively low capacitance and optical loss. This improvement will enable significantly smaller Mach-Zehnder modulators to be constructed that nonetheless would have low drive voltages, with substantial decreases in insertion loss. The described fabrication process is of minimal complexity; in particular, no high-resolution lithographic step is required.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: February 2, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Thomas Baehr-Jones, Yang Liu
  • Patent number: 10901150
    Abstract: A metal-contact-free photodetector includes an optically absorbing material, e.g. germanium, mounted on a device layer of a photonic integrated circuit, which includes a p-type contact and an n-type contact on opposite sides of a waveguide. The contacts are comprise of a plurality of independently doped regions ranging from lowest doped adjacent the waveguide to highest doped remote from the waveguide. An additional element is to add p and/or n doping on one or more of the sidewalls of the optically absorbing material, e.g Germanium. The advantage compared to the previously disclosed metal-contact-free photodetectors is that the bandwidth is much higher, and full speed is attained at lower voltage.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: January 26, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Ari Novack, Yaojia Chen
  • Patent number: 10901148
    Abstract: An optical circuit capable of operating as a 90° optical hybrid includes a phase-symmetric optical splitter and a 90° optical splitter, and two 2×2 optical couplers as optical combiners. The input ports of the optical combiners and the output ports of the optical splitters face a common area therebetween, with the optical splitters interposed between optical combiners as viewed along the circumference of the common area. The output ports of each optical splitter is connected to closest input ports of the optical combiners with optical waveguides of a same length. The length of the waveguides may be minimized when the optical couplers and the optical splitters are disposed in a cross-like configuration.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: January 26, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Yangjin Ma, Yang Liu
  • Patent number: 10901153
    Abstract: In Mach-Zehnder interferometer (MZI) based modulators (MZM) input laser light comes in from one side, gets split into two MZI arms, then recombined at an opposite side. Each MZI arm may be phase or intensity modulated depending on the set phase offset, whereby coherent or intensity modulation may be performed which can later be de-coded by a receiver. Ring resonator type modulators (RRM) are compact; however, their phase response is nonlinear, normally limiting their application in coherent phase modulation. However, a combined MZI RRM overcomes the shortcomings of the prior art by providing a novel structure and driving scheme for use with semiconductor photonics that takes advantage of the compactness of ring modulators and the linearity of MZI by setting the ring resonators to resonate at the input laser light wavelength.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: January 26, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Yangjin Ma, Alexandre Horth, Matthew Streshinsky, Ruizi Shi, Rafeed Sukkar, Richard Younce, Michael J. Hochberg
  • Patent number: 10884190
    Abstract: For multi-mode interference (MMI) couplers that have a plurality of input and output ports, e.g. 4×4, a large number of modes may be supported in the multimode region, e.g. >10, as the width of the MMI core grows larger. In order for MMI couplers to form good images, the supported modes preferably have low modal phase error, which can't be achieved using a conventional single layer design. Accordingly, a multi-mode interference (MMI) coupler comprising an MMI core comprising a plurality of waveguide core strips alternating with a plurality of cladding strips solves the aforementioned problems.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: January 5, 2021
    Assignee: Elenion Technologies, LLC
    Inventor: Alexandre Horth
  • Patent number: 10873173
    Abstract: In conventional hybrid lasers large back refection may lead to a degradation of relative intensity noise (RIN), linewidth broadening, mode hopping, etc. To solve the aforementioned problem a hybrid laser includes a mode converter for converting a higher-back-reflection mode of the light to a mode providing less back reflection to the gain chip. The mode converter may comprise a polarization rotator, a waveguide converter, or high-order mode converter. A routing waveguide may be provided including a phase shifter, e.g. a doped waveguide, for adjusting a cavity length of the laser cavity.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: December 22, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Hang Guan, Yang Liu, Ran Ding, Andreas Weirich, Michael J. Hochberg
  • Patent number: 10873400
    Abstract: Described are various embodiments of a dual optical modulator, system and method. In one embodiment, an optical modulator modulates an input optical signal having a designated optical frequency. The modulator comprises first and second tunable modulators operable around the optical frequency and operatively disposed between a bus waveguide path and an opposed waveguide path. The modulator further comprises a relative optical phase-shifter optically coupled between the tunable modulators so to impart a relative optical phase shift between the bus waveguide path and the opposed waveguide path. The tunable modulators are respectively driveable to modulate a respective resonance thereof in complimentary directions relative to the optical frequency and thereby resonantly redirect a selectable portion of the input optical signal along the opposed waveguide path such that the relative optical phase shift is imparted thereto for output.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: December 22, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Thomas Wetteland Baehr-Jones, Michael J. Hochberg, Yang Liu
  • Patent number: 10847665
    Abstract: A Ge-on-Si photodetector constructed without doping or contacting Germanium by metal is described. Despite the simplified fabrication process, the device has responsivity of 1.24 A/W, corresponding to 99.2% quantum efficiency. Dark current is 40 nA at ?4 V reverse bias. 3-dB bandwidth is 30 GHz.
    Type: Grant
    Filed: November 29, 2019
    Date of Patent: November 24, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Thomas Baehr-Jones, Yi Zhang, Michael J. Hochberg, Ari Novack
  • Patent number: 10830932
    Abstract: An on-chip optical filter including three different arm sections comprised of three different types of waveguides, e.g. shape, material or polarization, can achieve the same performance quality as external commercially available solutions with no addition costs of fabrication of the photonic integrated chip (PIC) and a footprint several orders of magnitude smaller than any of the conventional filters.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: November 10, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Tal Galfsky, Saeed Fathololoumi, Thomas Baehr-Jones, Matthew Streshinsky, Yury Dziashko
  • Patent number: 10831081
    Abstract: A dual-differential optical modulator includes two optical waveguide arms, each including one or more phase modulating p/n junctions. The p/n junctions in each waveguide arm are electrically coupled between a same pair of single-ended transmission lines so as to be differentially push-pull modulated when the transmission line pair is connected to a differential driver. Either cathode or anode electrodes of the p/n junctions are AC coupled to the transmission lines and DC biased independently on the transmission line signals.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: November 10, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Alexander Rylyakov, Yangjin Ma
  • Patent number: 10816740
    Abstract: Conventional hybrid photonic integrated circuits (PIC) combine one type of semiconductor platform for the main PIC, and a different type of semiconductor platform for a secondary chip. Conventional mounting processes include forming a recess in the main PIC, and mating electrical connectors from the secondary chip and the main PIC within the recess. Mating the first and second electrical connectors in the recess increases the complexity of forming the main PIC, and hampers heat dissipation from secondary chip through oxide layers in the main PIC. Providing a conductive, e.g. redistribution, layer from the first electrode along the bottom and sides of the recess eliminates the complexity in forming the main PIC, and enables the first electrical connector to be mounted directly onto a more thermally conductive substrate material.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: October 27, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Ari Novack, Saeed Fathololoumi, Michael Caverley