Patents Assigned to Elenion Technologies, LLC
  • Patent number: 10502895
    Abstract: A low loss high extinction ratio on-chip polarizer. The polarizer includes an input waveguide taper having an outer waveguiding region that widens in the direction of light propagation along at least a portion of the taper length, and a core waveguiding region that narrows in the direction of light propagation along at least a portion of the taper length, so as to selectively squeeze out light of undesired modes into the outer regions while preserving light of a desired mode in the waveguide core. An output filter section is provided to prevent light from reentering the output waveguide after being squeezed out. An integrated light absorber/deflector may be coupled to the outer waveguiding regions.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: December 10, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ruizhi Shi, Thomas Wetteland Baehr-Jones, Yangjin Ma, Yang Liu, Michael J. Hochberg, Matthew Akio Streshinsky, Alexandre Horth
  • Patent number: 10495830
    Abstract: A fiber alignment or “fiberposer” device enables the passive alignment of one or more optical fibers to a photonic integrated circuit (PIC) device using mating hard-stop features etched into the two devices. Accordingly, fiber grooves can be provide separate from the electrical and optical elements, and attached to the PIC with sub-micron accuracy. Fiberposers may also include a hermetic seal for a laser or other device on the PIC. All of these features significantly reduce the typical cost of an actively aligned optical device sealed in an hermetic package.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: December 3, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Nathan A. Nuttall, Daniel J. Blumenthal, Ari Novack, Holger N. Klein
  • Patent number: 10498461
    Abstract: In optical receivers, cancelling the DC component of the incoming current is a key to increasing the receiver's effectiveness, and therefore increase the channel capacity. Ideally, the receiver includes a DC cancellation circuit for removing the DC component; however, in differential receivers an offset may be created between the output voltage components caused by the various amplifiers. Accordingly, an offset cancellation circuit is required to determine the offset and to modify the DC cancellation circuit accordingly.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: December 3, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Patent number: 10466567
    Abstract: A dual-differential optical modulator includes two optical waveguide arms, each including one or more phase modulating p/n junctions. The p/n junctions in each waveguide arm are electrically coupled between a same pair of single-ended transmission lines so as to be differentially push-pull modulated when the transmission line pair is connected to a differential driver. Either cathode or anode electrodes of the p/n junctions are AC coupled to the transmission lines and DC biased independently on the transmission line signals.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: November 5, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Alexander Rylyakov, Yangjin Ma
  • Patent number: 10469171
    Abstract: A transceiver having an improved transmitter optical signal to noise ratio, and methods of making and using the same.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: November 5, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Guido Saathoff, Matthew Akio Streshinsky, Robert Palmer, Torsten Wuth
  • Patent number: 10461967
    Abstract: An optical coherent receiver includes an optical hybrid (OH) configured to mix signal and reference light, and two back-end optical ports. An optical equalizing network interconnects two 180° OH output ports with the two back-end optical ports so that each back-end optical port receives light from each of the two OH output ports. Optical signals from each of the two back-end optical ports are converted to electrical signals that are fed to a differential amplifier. Adjusting coupling ratios and/or optical delays in the optical equalizing network reduces an OSNR penalty of a lower-bandwidth differential amplifier.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: October 29, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Abdelrahman Ahmed, Ruizhi Shi, Alexander Rylyakov, Richard C. Younce
  • Patent number: 10451903
    Abstract: An optical modulator apparatus may include a plurality of segment drivers, each segment driver having a unique offset voltage and driving but a portion or a segment of an electro-optical modulator. A modulating electrical signal may be applied to the segment drivers via a plurality of electrical delays. Parameters of the segment drivers may be selected so as to approximate a pre-defined transfer function, which may include a linear or a non-linear transfer function.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: October 22, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ran Ding, Thomas Wetteland Baehr-Jones, Peter D. Magill, Michael J. Hochberg, Alexander Rylyakov
  • Patent number: 10454441
    Abstract: In conventional optical receivers the dynamic range is obtained by using variable gain amplifiers (VGA) with a fixed trans-impedance amplifier (TIA) gain. To overcome the SNR problems inherent in conventional receivers an improved optical receiver comprises an automatic gain control loop for generating at least one gain control signal for controlling gain of both the VGA and the TIA. Ideally, both the resistance and the gain of the TIA are controlled by a gain control signal.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: October 22, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Mostafa Ahmed, Alexander Rylyakov
  • Patent number: 10451804
    Abstract: An integrated polarization splitter and rotator (PSR) employs the TE0 and TE1 modes of propagating light, rather than the TE0 and TM0 modes used in conventional prior art PSR. The integrated PSR exhibits appreciably flatter wavelength response because it does not require a directional coupler to de-multiplex incoming polarizations. The PSR allows tuning of the TM0 loss to reduce polarization dependent loss (PDL). This integrated polarization splitter and rotator is applicable to all integrated platforms including Silicon-on-Insulator (SOI) and III-V semiconductor compound systems. The PSR may be very compact (12×2 ?m2), and provides low loss (<0.3 dB across the C-band) and ultra-broadband operation. The PSR also affords better control of polarization dependent losses.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: October 22, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Yang Liu, Yangjin Ma, Michael J. Hochberg
  • Patent number: 10444451
    Abstract: A light shield may be formed in photonic integrated circuit between integrated optical devices of the photonic integrated circuit. The light shield may be built by using materials already present in the photonic integrated circuit, for example the light shield may include metal walls and doped semiconductor regions. Light-emitting or light-sensitive integrated optical devices or modules of a photonic integrated circuit may be constructed with light shields integrally built in.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: October 15, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ruizhi Shi, Yang Liu, Ari Novack, Yangjin Ma, Kishore Padmaraju, Michael J. Hochberg
  • Patent number: 10439728
    Abstract: Described are various embodiments of a dual optical modulator, system and method. In one embodiment, an optical modulator modulates an input optical signal having a designated optical frequency. The modulator comprises first and second tunable modulators operable around the optical frequency and operatively disposed between a bus waveguide path and an opposed waveguide path. The modulator further comprises a relative optical phase-shifter optically coupled between the tunable modulators so to impart a relative optical phase shift between the bus waveguide path and the opposed waveguide path. The tunable modulators are respectively driveable to modulate a respective resonance thereof in complimentary directions relative to the optical frequency and thereby resonantly redirect a selectable portion of the input optical signal along the opposed waveguide path such that the relative optical phase shift is imparted thereto for output.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: October 8, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Thomas Wetteland Baehr-Jones, Michael J. Hochberg, Yang Liu
  • Patent number: 10436986
    Abstract: A multimode interference (MMI) coupler with an MMI region of curved edges, and a method of design and manufacturing by using a computerized optimization algorithm to determine a favorable set of segment widths for the MMI region for a predefined set of coupler design parameters.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: October 8, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Yangjin Ma, Michael J. Hochberg
  • Patent number: 10429313
    Abstract: A test system for determining a surface characteristic of a chip facet includes an on-chip waveguide, a detector, and a processor. The on-chip waveguide is configured to direct test light towards the facet, where a portion of the test light is reflected and a portion of the test light is transmitted. The detector is configured to measure an amount of the reflected portion or the transmitted portion, and the processor is configured to determine a surface characteristic of the facet, such as a facet angle, a facet curvature, and/or a facet roughness, on the basis of the measured amount.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: October 1, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Matthew Akio Streshinsky, Ari Novack, Michael J. Hochberg
  • Patent number: 10409012
    Abstract: Back scattering in an optical waveguide at an operating wavelength is controlled by adjusting an optical phase of light propagating in the waveguide at one or more locations along the waveguide. A portion of the back scattered light is tapped off near an input port and coupled into a photodetector. A controller detects changes in the photodetector signal and adjusts an optical phase tuner configured to control the optical phase of light in the waveguide at the selected location or locations. The optical phase tuner may be configured to vary the refractive index of at least a portion of the waveguide.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: September 10, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Thomas Wetteland Baehr-Jones, Matthew Akio Streshinsky, Yang Liu, Michael J. Hochberg, Ran Ding, Alexei Tager
  • Patent number: 10409005
    Abstract: The back reflection in photodiodes is caused by an abrupt index contrast between the input waveguide and the composite waveguide/light absorbing material. In order to improve the back reflection, it is proposed to introduce an angle between the waveguide and the leading edge of the light absorbing material. The angle will result in gradually changing the effective index between the index of the waveguide and the index of the composite section, and consequently lower the amount of light reflecting back.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: September 10, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Saeed Fathololoumi, Yang Liu, Yaojia Chen
  • Patent number: 10411149
    Abstract: A lateral Ge/Si APD constructed on a silicon-on-insulator wafer includes a silicon device layer having regions that are doped to provide a lateral electric field and an avalanche region. A region having a modest doping level is in contact with a germanium body. There are no metal contacts made to the germanium body. The electrical contacts to the germanium body are made by way of the doped regions in the silicon device layer.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: September 10, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ari Novack, Yang Liu, Yi Zhang
  • Patent number: 10401655
    Abstract: An optical waveguide modulator with automatic bias control is disclosed. A portion of the modulator light is mixed with reference light and converted to one or more electrical feedback signals. An electrical feedback circuit controls the modulator bias responsive to the feedback signals.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 3, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Matthew Akio Streshinsky, Ari Novack, Kishore Padmaraju, Michael J. Hochberg, Alexander Rylyakov
  • Patent number: 10393961
    Abstract: A mode-matched waveguide Y-junction with balanced or unbalanced splitting comprises an input waveguide, expanding from an input end to an output end, for expanding the input beam of light along a longitudinal axis; first and second output waveguides extending from the output end of the input waveguide separated by a gap. Ideally, each of the first and second output waveguides includes an initial section capable of supporting a fundamental super mode, and having an inner wall substantially parallel to the longitudinal axis, and a mode splitting section extending from the initial section at an acute angle to the longitudinal axis.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: August 27, 2019
    Assignee: Elenion Technologies, LLC
    Inventor: Alexandre Horth
  • Patent number: 10389451
    Abstract: An heterodyne apparatus and method for measuring performance parameters of a coherent optical receiver at RF frequencies is disclosed. Two coherent lights are launched into signal and LO ports of the receiver with an optical frequency offset f. One of the lights is modulated in amplitude at two phase-locked modulation frequencies F1 and F2. COR performance parameters are determined by comparing two frequency components of the COR output. The group delay variation (GDV) information is obtained by comparing phases of two time-domain traces corresponding to frequency components of the COR output signal at the two modulation frequencies shifted by the optical frequency offset f.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: August 20, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Bernd-Harald Horst Jurgen Rohde, Erich Gottwald
  • Patent number: 10359567
    Abstract: A qualification apparatus for a photonic chip on a wafer that leaves undisturbed an edge coupler that provides an operating port for the photonic devices or circuits on the chip during normal operation in order to not introduce extra loss in the optical path of the final circuit. The qualification apparatus provides an optical path that is angled with regard to the surface of the chip, for example by using a grating coupler. The qualification apparatus can be removed after the chip is qualified. Optionally, the qualification apparatus can be left in communication with the chip and optionally employed as an input port for the chip after the chip has been separated from other chips on a common substrate.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: July 23, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ari Novack, Matthew Akio Streshinsky, Michael J. Hochberg