Patents Assigned to Elenion Technologies, LLC
  • Patent number: 10359571
    Abstract: For multi-mode interference (MMI) couplers that have a plurality of input and output ports, e.g. 4×4, a large number of modes may be supported in the multimode region, e.g. >10, as the width of the MMI core grows larger. In order for MMI couplers to form good images, the supported modes preferably have low modal phase error, which can't be achieved using a conventional single layer design. Accordingly, a multi-mode interference (MMI) coupler comprising an MMI core comprising a plurality of waveguide core strips alternating with a plurality of cladding strips solves the aforementioned problems.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: July 23, 2019
    Assignee: Elenion Technologies, LLC
    Inventor: Alexandre Horth
  • Patent number: 10345520
    Abstract: An optical device and a method of manufacturing an optical device, including a ridge waveguide second, and a strip-loaded ridge waveguide section, comprises applying two different protective layers and two separate etches at two different depths. The protective layers overlap to protect the same section of the optical device, and to limit the surfaces of optical device to exposure to multiple etches, except at edges where the protective layers overlap.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: July 9, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Thomas Wetteland Baehr-Jones, Ruizhi Shi
  • Publication number: 20190181612
    Abstract: A hybrid single or multi-wavelength laser using an optical gain element, such as a semiconductor optical amplifier (SOA), for example a QD RSOA, and a semiconductor, e.g. silicon, photonics chip is demonstrated. A plurality, e.g. four, lasing modes at a predetermined, e.g. 2 nm, spacing and less than 3 dB power non-uniformity may be observed, with over 20 mW of total output power. Each lasing peak can be successfully modulated at 10 Gb/s. At 10?9 BER, the receiver power penalty is less than 2.6 dB compared to a conventional commercial laser. An expected application is the provision of a comb laser source for WDM transmission in optical interconnection systems.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 13, 2019
    Applicant: Elenion Technologies, LLC
    Inventors: Yi Zhang, Shuyu Yang, Michael J. Hochberg, Thomas Wetteland Baehr-Jones, Saeed Fathololoumi
  • Patent number: 10317623
    Abstract: An integrated optical device fabricated in the back end of line process located within the vertical span of the metal stack and having one or more advantages over a corresponding integrated optical device fabricated in the silicon on insulator layer.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: June 11, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ruizhi Shi, Michael J. Hochberg, Ari Jason Novack, Thomas Wetteland Baehr-Jones
  • Patent number: 10317710
    Abstract: A novel phase shifter design for carrier depletion based silicon modulators, based on an experimentally validated model, is described. It is believed that the heretofore neglected effect of incomplete ionization will have a significant impact on ultra-responsive phase shifters. A low V?L product of 0.3 V·cm associated with a low propagation loss of 20 dB/cm is expected to be observed. The phase shifter is based on overlapping implantation steps, where the doses and energies are carefully chosen to utilize counter-doping to produce an S-shaped junction. This junction has a particularly attractive V?L figure of merit, while simultaneously achieving attractively low capacitance and optical loss. This improvement will enable significantly smaller Mach-Zehnder modulators to be constructed that nonetheless would have low drive voltages, with substantial decreases in insertion loss. The described fabrication process is of minimal complexity; in particular, no high-resolution lithographic step is required.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: June 11, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Thomas Baehr-Jones, Yang Liu
  • Patent number: 10320488
    Abstract: A distributed traveling-wave Mach-Zehnder modulator driver having a plurality of modulation stages that operate cooperatively (in-phase) to provide a signal suitable for use in a 100 Gb/s optical fiber transmitter at power levels that are compatible with conventional semiconductor devices and conventional semiconductor processing is described.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: June 11, 2019
    Assignee: Elenion Technologies, LLC.
    Inventors: Ran Ding, Thomas Wetteland Baehr-Jones, Michael J. Hochberg, Alexander Rylyakov
  • Patent number: 10295748
    Abstract: A multimode interference (MMI) coupler with an MMI region of curved edges, and a method of design and manufacturing by using a computerized optimization algorithm to determine a favorable set of segment widths for the MMI region for a predefined set of coupler design parameters.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: May 21, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Yangjin Ma, Michael J. Hochberg
  • Patent number: 10261255
    Abstract: A bent taper is provided that includes one or more waveguide bends, at least one of which has a tapering waveguide width along at least a portion thereof. In one embodiment, the bent taper is an S-shaped bent taper that is configured as a TE0-TE1 mode convertor. Such a bent taper can be combined with a linear bi-layer taper configured as a TM0-TE1 mode converter to form a TM0-TE0 polarization rotator.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: April 16, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Yangjin Ma, Michael J. Hochberg
  • Patent number: 10261254
    Abstract: A low loss high extinction ratio on-chip polarizer is disclosed. The polarizer includes an input waveguide taper having an outer waveguiding region that widens in the direction of light propagation along at least a portion of the taper length, and a core waveguiding region that narrows in the direction of light propagation along at least a portion of the taper length, so as to selectively squeeze out light of undesired modes into the outer regions while preserving light of a desired mode in the waveguide core. An integrated light absorber/deflector may be coupled to the outer waveguiding regions.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: April 16, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ruizhi Shi, Thomas Wetteland Baehr-Jones, Yangjin Ma, Yang Liu, Michael J. Hochberg, Matthew Akio Streshinsky
  • Patent number: 10243328
    Abstract: A hybrid single or multi-wavelength laser using an optical gain element, such as a semiconductor optical amplifier (SOA), for example a QD RSOA, and a semiconductor, e.g. silicon, photonics chip is demonstrated. A plurality, e.g. four, lasing modes at a predetermined, e.g. 2 nm, spacing and less than 3 dB power non-uniformity may be observed, with over 20 mW of total output power. Each lasing peak can be successfully modulated at 10 Gb/s. At 10?9 BER, the receiver power penalty is less than 2.6 dB compared to a conventional commercial laser. An expected application is the provision of a comb laser source for WDM transmission in optical interconnection systems.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: March 26, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Yi Zhang, Shuyu Yang, Michael J. Hochberg, Thomas Wetteland Baehr-Jones, Saeed Fathololoumi
  • Patent number: 10228514
    Abstract: A SOI bent taper structure is used as a mode convertor. By tuning the widths of the bent taper and the bend angles, almost lossless mode conversion is realized between TE0 and TE1 in a silicon waveguide. The simulated loss is <0.05 dB across C-band. This bent taper can be combined with bi-layer TM0-TE1 rotator to reach very high efficient TM0-TE0 polarization rotator. An ultra-compact (9 ?m) bi-layer TM0-TE1 taper based on particle swarm optimization is demonstrated. The entire TM0-TE0 rotator has a loss <0.25 dB and polarization extinction ratio >25 dB, worst-case across the C-band.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: March 12, 2019
    Assignee: Elenion Technologies, LLC
    Inventor: Yangjin Ma
  • Patent number: 10222565
    Abstract: Two semiconductor chips are optically aligned to form a hybrid semiconductor device. Both chips have optical waveguides and alignment surface positioned at precisely-defined complementary vertical offsets from optical axes of the corresponding waveguides, so that the waveguides are vertically aligned when one of the chips is placed atop the other with their alignment surface abutting each other. The position of the at least one of the alignment surface in a layer stack of its chip is precisely defined by epitaxy. The chips are bonded at offset bonding pads with the alignment surfaces abutting in the absence of bonding material therebetween.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: March 5, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: David Henry Kinghorn, Ari Jason Novack, Holger N. Klein, Nathan A. Nuttall, Kishor V. Desai, Daniel J. Blumenthal, Michael J. Hochberg, Ruizhi Shi
  • Patent number: 10225021
    Abstract: A high data rate, high sensitivity, low power optical link using low-bandwidth components and low-bandwidth E/O drivers and receivers and method of building same. The method is based on the idea of making the optical part of the link look like a bandwidth limited lossy electrical channel, so that the powerful equalization methods used in the wireline electrical links can be applied to recover the transmitted data in a situation with low bandwidth and/or high loss and strong inter-symbol interference. Linear and non-linear optical channel components, E/O drivers and receivers can benefit from the apparatus and the methods of the invention.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: March 5, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Alexander Rylyakov, Richard Younce, Ran Ding, Peter D. Magill, Hao Li, Michael J. Hochberg
  • Patent number: 10218437
    Abstract: An heterodyne apparatus and method for measuring performance parameters of a coherent optical receiver at RF frequencies is disclosed. Two coherent lights are launched into signal and LO ports of the receiver with an optical frequency offset f. One of the lights is modulated in amplitude at a test modulation frequency F. COR performance parameters are determined by comparing two frequency components of the COR output. CMRR is determined based on a strength of a direct detection spectral line at the modulation frequency relative to that of spectrally-shifted lines at (F±f). GDV information is obtained by modulating one of the lights at two phase-locked frequencies, such as F and 2F, and comparing phases of two time-domain traces corresponding to frequency components of the COR output signal at the two frequencies.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: February 26, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Bernd-Harald Horst Jurgen Rohde, Erich Gottwald
  • Patent number: 10215920
    Abstract: A low loss high extinction ratio on-chip polarizer is disclosed. The polarizer is formed of a mode convertor followed by a mode squeezer and a dump waveguide, and may be configured to pass a desired waveguide mode and reject undesired modes. An embodiment is described that transmits a TE0 mode while blocking a TM0 mode by converting it into a higher-order TEn mode in a waveguide taper, squeezing out the TEn mode in a second waveguide taper to lessen its confinement, and then dumping the TEn mode in a waveguide bend that is configured to pass the TE0 mode.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: February 26, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Yangjin Ma, Michael J. Hochberg, Ruizhi Shi, Yang Liu
  • Patent number: 10217881
    Abstract: A Ge-on-Si photodetector constructed without doping or contacting Germanium by metal is described. Despite the simplified fabrication process, the device has responsivity of 1.24 A/W, corresponding to 99.2% quantum efficiency. Dark current is 40 nA at ?4 V reverse bias. 3-dB bandwidth is 30 GHz.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: February 26, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Thomas Wetteland Baehr-Jones, Yi Zhang, Michael J. Hochberg, Ari Novack
  • Patent number: 10211121
    Abstract: A heat sink for a semiconductor chip device includes cavities in a lower surface thereof for receiving electrical components on a top surface of the semiconductor chip, and a pedestal extending through an opening in the semiconductor chip for contacting electrical components on a bottom surface of the semiconductor chip. A lid may also be provided on the bottom surface of the semiconductor chip for protecting the electrical components and for heat sinking the electrical components to an adjacent device or printed circuit board.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: February 19, 2019
    Assignee: Elenion Technologies, LLC
    Inventor: Nathan A. Nuttall
  • Patent number: 10209465
    Abstract: A light shield may be formed in photonic integrated circuit between integrated optical devices of the photonic integrated circuit. The light shield may be built by using materials already present in the photonic integrated circuit, for example the light shield may include metal walls and doped semiconductor regions. Light-emitting or light-sensitive integrated optical devices or modules of a photonic integrated circuit may be constructed with light shields integrally built in.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: February 19, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ruizhi Shi, Yang Liu, Ari Novack, Yangjin Ma, Kishore Padmaraju, Michael J. Hochberg
  • Patent number: 10205531
    Abstract: A distributed traveling-wave Mach-Zehnder modulator driver having a plurality of modulation stages that operate cooperatively (in-phase) to provide a signal suitable for use in a 100 Gb/s optical fiber transmitter at power levels that are compatible with conventional semiconductor devices and conventional semiconductor processing is described.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: February 12, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ran Ding, Thomas Wetteland Baehr-Jones, Michael J. Hochberg, Alexander Rylyakov
  • Patent number: 10205302
    Abstract: A hybrid external cavity multi-wavelength laser using a QD RSOA and a silicon photonics chip is demonstrated. Four lasing modes at 2 nm spacing and less than 3 dB power non-uniformity were observed, with over 20 mW of total output power. Each lasing peak can be successfully modulated at 10 Gb/s. At 10?9 BER, the receiver power penalty is less than 2.6 dB compared to a conventional commercial laser. An expected application is the provision of a comb laser source for WDM transmission in optical interconnection systems.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: February 12, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Yi Zhang, Shuyu Yang, Michael J. Hochberg, Thomas Wetteland Baehr-Jones