Patents Assigned to H. C. Starck, Inc.
  • Patent number: 9017600
    Abstract: In various embodiments, planar sputtering targets are produced by forming a billet at least by pressing molybdenum powder in a mold and sintering the pressed powder, working the billet to form a worked billet, heat treating the worked billet, working the worked billet to form a final billet, and heat treating the final billet.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: April 28, 2015
    Assignee: H.C. Starck Inc.
    Inventors: Brad Lemon, Joseph Hirt, Timothy Welling, James G. Daily, III, David Meendering, Gary Rozak, Jerome O'Grady, Prabhat Kumar, Steven A. Miller, Rong-chein Richard Wu, David G. Schwartz
  • Patent number: 9017762
    Abstract: The invention relates to sputter targets and methods for depositing a layer from a sputter target. The method preferably includes the steps of: placing a sputter target in a vacuum chamber; placing a substrate having a substrate surface in the vacuum chamber; reducing the pressure in the vacuum chamber to about 100 Torr or less; removing atoms from the surface of the sputter target while the sputter target is in the vacuum chamber (e.g., using a magnetic field and/or an electric field). The deposited layer preferably is a molybdenum containing alloy including about 50 atomic percent or more molybdenum, 0.5 to 45 atomic percent of a second metal element selected from the group consisting of niobium and vanadium; and 0.5 to 45 atomic percent of a third metal element selected from the group consisting of tantalum, chromium, vanadium, niobium, and titanium.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: April 28, 2015
    Assignee: H.C. Starck, Inc.
    Inventors: Gary Alan Rozak, Mark E. Gaydos, Patrick Alan Hogan, Shuwei Sun
  • Patent number: 8961867
    Abstract: Refractory metal powders are dehydrided in a device which includes a preheat chamber for retaining the metal powder fully heated in a hot zone to allow diffusion of hydrogen out of the powder. The powder is cooled in a cooling chamber for a residence time sufficiently short to prevent re-absorption of the hydrogen by the powder. The powder is consolidated by impact on a substrate at the exit of the cooling chamber to build a deposit in solid dense form on the substrate.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: February 24, 2015
    Assignee: H.C. Starck Inc.
    Inventors: Steven A. Miller, Mark Gaydos, Leonid N. Shekhter, Gokce Gulsoy
  • Patent number: 8911528
    Abstract: Molybdenum titanium sputter targets are provided. In one aspect, the targets are substantially free of the ?(Ti, Mo) alloy phase. In another aspect, the targets are substantially comprised of single phase ?(Ti, Mo) alloy. In both aspects, particulate emission during sputtering is reduced. Methods of preparing the targets, methods of bonding targets together to produce large area sputter targets, and films produced by the targets, are also provided.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: December 16, 2014
    Assignee: H.C. Starck Inc.
    Inventors: Mark E. Gaydos, Prabhat Kumar, Steve Miller, Norman C. Mills, Gary Rozak, Rong-Chein Richard Wu
  • Patent number: 8883250
    Abstract: In various embodiments, a sputtering target initially formed by ingot metallurgy or powder metallurgy and comprising a sputtering-target material is provided, the sputtering-target material (i) comprising a metal, (ii) defining a recessed furrow therein, and (iii) having a first grain size and a first crystalline microstructure. A powder is spray-deposited within the furrow to form a layer therein, the layer (i) comprising the metal, (ii) having a second grain size finer than the first grain size, and (iii) having a second crystalline microstructure more random than the first crystalline microstructure. Spray-depositing the powder within the furrow forms a distinct boundary line between the layer and the sputtering-target material.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: November 11, 2014
    Assignees: H.C. Starck Inc., H.C. Starck GmbH
    Inventors: Steven A. Miller, Prabhat Kumar, Rong-chein Richard Wu, Shuwei Sun, Stefan Zimmermann, Olaf Schmidt-Park
  • Patent number: 8784729
    Abstract: The present invention is directed to a process for producing high density, refractory metal products via a press/sintering process. The invention is also directed to a process for producing a sputtering target and to the sputtering target so produced.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: July 22, 2014
    Assignee: H.C. Starck Inc.
    Inventors: Prabhat Kumar, Charles Wood, Gary Rozak, Steven A. Miller, Glen Zeman, Rong-Chein Richard Wu
  • Patent number: 8777090
    Abstract: In various embodiments, protective layers are bonded to a steel layer and connected by a layer of unmelted metal powder produced by cold spray.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: July 15, 2014
    Assignee: H.C. Starck Inc.
    Inventors: Steven A. Miller, Leonid N. Shekhter, Stefan Zimmermann
  • Patent number: 8743926
    Abstract: In various embodiments, an electrode has a shaft extending from an electrode head and a cooling passage extending from an open end disposed at an attachment end of the shaft to a closed end disposed within the electrode head.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: June 3, 2014
    Assignee: H.C. Starck Inc.
    Inventors: Joseph Hirt, John Eiler
  • Patent number: 8734896
    Abstract: A joined sputtering target comprising a sputtering material is formed by disposing two discrete sputtering-target tiles comprising the sputtering material proximate each other, thereby forming an interface between the tiles, the interface comprising at least one of an interlocking joint therein or a recess in a top surface thereof, and spray-depositing a spray material over at least a portion of the interface, thereby joining the tiles to form the joined sputtering target.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: May 27, 2014
    Assignee: H.C. Starck Inc.
    Inventors: Scott Jeffrey Volchko, Stefan Zimmermann, Steven A. Miller, Michael Thomas Stawovy
  • Patent number: 8715386
    Abstract: In various embodiments, low-oxygen metal powder is produced by heating a metal powder to a temperature at which an oxide of the metal powder becomes thermodynamically unstable and applying a pressure to volatilize the oxygen.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: May 6, 2014
    Assignee: H.C. Starck Inc.
    Inventors: Leonid N. Shekhter, Steven A. Miller, Leah F. Haywiser, Rong-Chein R. Wu
  • Patent number: 8703233
    Abstract: In various embodiments, a joined sputtering target is formed by filling at least a portion of a gap between two discrete sputtering-target tiles with a gap-fill material, spray-depositing a spray material to form a partial joint, removing at least a portion of the gap-fill material, and, thereafter, spray-depositing the spray material to join the tiles.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: April 22, 2014
    Assignee: H.C. Starck Inc.
    Inventors: Steven A. Miller, Francois-Charles Dary, Mark Gaydos, Gary Rozak
  • Publication number: 20140102880
    Abstract: The invention relates to sputter targets and methods for depositing a layer from a sputter target. The method preferably includes the steps of: placing a sputter target in a vacuum chamber; placing a substrate having a substrate surface in the vacuum chamber; reducing the pressure in the vacuum chamber to about 100 Torr or less; removing atoms from the surface of the sputter target while the sputter target is in the vacuum chamber (e.g., using a magnetic field and/or an electric field). The deposited layer preferably is a molybdenum containing alloy including about 50 atomic percent or more molybdenum, 0.5 to 45 atomic percent of a second metal element selected from the group consisting of niobium and vanadium; and 0.5 to 45 atomic percent of a third metal element selected from the group consisting of tantalum, chromium, vanadium, niobium, and titanium.
    Type: Application
    Filed: April 4, 2013
    Publication date: April 17, 2014
    Applicant: H.C. STARCK, INC.
    Inventor: H.C. STARCK, INC.
  • Publication number: 20130337159
    Abstract: In various embodiments, a sputtering target initially formed by ingot metallurgy or powder metallurgy and comprising a sputtering-target material is provided, the sputtering-target material (i) comprising a metal, (ii) defining a recessed furrow therein, and (iii) having a first grain size and a first crystalline microstructure. A powder is spray-deposited within the furrow to form a layer therein, the layer (i) comprising the metal, (ii) having a second grain size finer than the first grain size, and (iii) having a second crystalline microstructure more random than the first crystalline microstructure. Spray-depositing the powder within the furrow forms a distinct boundary line between the layer and the sputtering-target material.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 19, 2013
    Applicant: H.C. Starck Inc.
    Inventors: Steven A. Miller, Prabhat Kumar, Richard Wu, Shuwei Sun, Stefan Zimmermann, Olaf Schmidt-Park
  • Publication number: 20130299347
    Abstract: A sputtering target that includes at least two consolidated blocks, each block including an alloy including a first metal (e.g., a refractory metal such as molybdenum in an amount greater than about 30 percent by weight) and at least one additional alloying ingredient; and a joint between the at least two consolidated blocks, the joint being prepared free of any microstructure derived from a diffusion bond of an added loose powder. A process for making the target includes hot isostatically pressing (e.g., below a temperature of 1080° C.), consolidated preform blocks that, prior to pressing, have interposed between the consolidated powder metal blocks at least one continuous solid interface portion. The at least one continuous solid interface portion may include a cold spray body, which may be a mass of cold spray deposited powders on a surface a block, a sintered preform, a compacted powder body (e.g., a tile), or any combination thereof.
    Type: Application
    Filed: March 11, 2013
    Publication date: November 14, 2013
    Applicant: H.C. STARCK, INC.
    Inventors: Gary Alan Rozak, Mark A. Gaydos, Christopher Michaluk
  • Patent number: 8562715
    Abstract: The invention relates to a process for producing sinterable molybdenum metal powder in a moving bed, sinterable molybdenum powder and its use.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: October 22, 2013
    Assignee: H.C. Starck Inc.
    Inventor: Benno Gries
  • Patent number: 8499606
    Abstract: In accordance with various embodiments, plates are formed via a plurality of upset-forging and forging-back cycles followed by a plurality of rolling passes.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: August 6, 2013
    Assignee: H.C. Starck Inc.
    Inventor: Peter R. Jepson
  • Patent number: 8491959
    Abstract: In various embodiments, a sputtering target initially formed by ingot metallurgy or powder metallurgy and comprising a sputtering-target material is provided, the sputtering-target material (i) comprising a refractory metal, (ii) defining a recessed furrow therein, and (iii) having a first grain size and a first crystalline microstructure. A powder is spray-deposited within the furrow to form a layer therein, the layer (i) comprising the metal, (ii) having a second grain size finer than the first grain size, and (iii) having a second crystalline microstructure more random than the first crystalline microstructure. Spray-depositing the powder within the furrow forms a distinct boundary line between the layer and the sputtering-target material.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: July 23, 2013
    Assignee: H.C. Starck Inc.
    Inventors: Steven A. Miller, Olaf Schmidt-Park, Prabhat Kumar, Richard Wu, Shuwei Sun, Stefan Zimmerman
  • Patent number: 8470396
    Abstract: Refractory metal powders are dehydrided in a device which includes a preheat chamber for retaining the metal powder fully heated in a hot zone to allow diffusion of hydrogen out of the powder. The powder is cooled in a cooling chamber for a residence time sufficiently short to prevent re-absorbtion of the hydrogen by the powder. The powder is consolidated by impact on a substrate at the exit of the cooling chamber to build a deposit in solid dense form on the substrate.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: June 25, 2013
    Assignee: H.C. Starck Inc.
    Inventors: Steven A. Miller, Mark Gaydos, Leonid N. Shekhter, Gokce Gulsoy
  • Patent number: 8449818
    Abstract: The invention is directed at sputter targets including 50 atomic % or more molybdenum, a second metal element of titanium, and a third metal element of chromium or tantalum, and deposited films prepared by the sputter targets. In a preferred aspect of the invention, the sputter target includes a phase that is rich in molybdenum, a phase that is rich in titanium, and a phase that is rich in the third metal element.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 28, 2013
    Assignee: H. C. Starck, Inc.
    Inventors: Gary Alan Rozak, Mark E. Gaydos, Patrick Alan Hogan, Shuwei Sun
  • Patent number: 8448840
    Abstract: In various embodiments, protective layers are bonded to a steel layer and connected by a layer of unmelted metal powder produced by cold spray.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: May 28, 2013
    Assignee: H.C. Starck Inc.
    Inventors: Steven A. Miller, Leonid N. Shekhter, Stefan Zimmerman