Patents Assigned to Intersil Americas LLC
  • Patent number: 10637266
    Abstract: An apparatus including a proportional gain circuit, an integral gain circuit, a limit circuit, a gain booster circuit and a combiner. The gain circuits apply a proportional gain and an integral gain to an error signal, and the combiner combines both gained error signals to provide a control signal. The limit circuit applies a limit function that limits the proportional gain to a magnitude. The gain booster circuit increases gain while the limit function is being applied. The increased gain may be applied to only the integral gain, or to both the integral and proportional gains such as by boosting gain of the error signal. The apparatus may be a regulator that may include multiple control loops providing multiple error signals, in which a mode selector selects one of the error signals to control regulation. The limit function increases stability while the boosted gain improves transient response during mode transitions.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: April 28, 2020
    Assignee: Intersil Americas LLC
    Inventors: M. Jason Houston, Eric M. Solie, Mehul D. Shah
  • Patent number: 10594152
    Abstract: One embodiment pertains to a method including determining if external power is supplied to a power system which includes a DC-DC voltage converter; if external power is not supplied to the power system, then turn on a switching transistor in the DC-DC voltage converter and provide battery power to the load through the switching transistor; if external power is supplied to the power system, then charge a battery.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: March 17, 2020
    Assignee: Intersil Americas LLC
    Inventors: Lei Zhao, Jia Wei
  • Patent number: 10582617
    Abstract: A circuit module includes a plurality of electronic components and a single-layer conductive package substrate. The single-layer conductive package substrate is adapted to physically support and electrically interconnect the electronic components. The substrate has a peripheral portion and an interior portion. The peripheral portion includes a plurality of peripheral contact pads coupled to corresponding electronic components. The interior portion includes a plurality of floating contact pads that are electrically isolated from the peripheral contact pads and are coupled to corresponding electronic components.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: March 3, 2020
    Assignee: Intersil Americas LLC
    Inventors: Jian Yin, Nikhil Kelkar, Loyde M. Carpenter, Jr., Nattorn Pongratananukul, Patrick J. Selby, Steven R. Rivet, Michael W. Althar
  • Patent number: 10535649
    Abstract: An enhanced layout for a multiple-finger ESD protection device has several embodiments. In these embodiments, the base contacts of the NPN (or PNP) transistors utilized as voltage clamps in the multiple-finger NPN-based (or PNP-based) multiple-finger ESD protection device are disposed at opposite edges of the multiple-finger ESD protection device and oriented perpendicularly to the orientation of the fingers in the multiple-finger ESD protection device. Similarly, the body contacts of the NMOS (or PMOS) transistors utilized as voltage clamps in the multiple-finger NMOS-based (or PMOS-based) multiple-finger ESD protection device are disposed at opposite edges of the multiple-finger ESD protection device and oriented perpendicularly to the orientation of the fingers in the multiple-finger ESD protection device.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: January 14, 2020
    Assignee: Intersil Americas LLC
    Inventor: Abu T. Kabir
  • Patent number: 10534446
    Abstract: An optical proximity detector includes a driver, light detector, analog front-end, sensor(s) that sense correction factor(s) (e.g., temperature, supply voltage and/or forward voltage drop), and a digital back end. The driver drives the light source to emit light. The light detector produces a light detection signal indicative of a magnitude and a phase of a portion of the emitted light that reflects off an object and is incident on the light detector. The analog front-end receives the light detection signal and outputs a digital light detection signal, or digital in-phase and quadrature-phase signals, which are provided to the digital back-end. The digital back-end performs closed loop correction(s) for dynamic variation(s) in gain and/or phase caused by a portion of the analog front-end, uses polynomial equation(s) and sensed correction factor(s) to perform open loop correction(s) for dynamic variations in temperature, supply voltage and/or forward voltage drop, and outputs a distance value.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: January 14, 2020
    Assignee: Intersil Americas LLC
    Inventors: Itaru Hiromi, Philip V. Golden, Steven Herbst
  • Patent number: 10528104
    Abstract: One embodiment is directed towards a molded insulator substrate. The molded insulator substrate includes a first insulator having a first surface and a second surface. A recess in said first surface of the first insulator is configured to facilitate venting of a second insulator over exposed regions of the first surface. A first conductive terminal is exposed through the first surface. A second conductive terminal is exposed through the second surface and electrically coupled to the first terminal.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: January 7, 2020
    Assignee: Intersil Americas LLC
    Inventor: Randolph Cruz
  • Patent number: 10529475
    Abstract: An embodiment of an apparatus includes first and second core regions, first and second conductors, and an isolation region. The first core region has a first permeability, and the first conductor is disposed in the first core region. The second core region has a second permeability, and the second conductor is disposed in the second core region. And the isolation region is disposed between the first and second core regions, and has a third permeability that is significantly different than the first and second permeabilities. For example, the first and second conductors may be windings of respective first and second inductors, and the isolation region, which may be attached to, or integral with, the first and second core regions, may reduce the amount of magnetic coupling between the inductors to a level that is negligible, such that the inductors may be used in applications that call for magnetically uncoupled inductors.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 7, 2020
    Assignee: INTERSIL AMERICAS LLC
    Inventors: Jian Yin, Michael Althar, Steve Rivet
  • Patent number: 10523025
    Abstract: A voltage error signal is provided to a PWM controller of a voltage regular and used to produce a PWM signal that drives a power stage of the regulator. When operating in an adapter current limit regulation mode, an adapter current sense voltage, indicative of an adapter current, is compared to an adapter current reference voltage to produce an adapter current error signal. A compensator receives the adapter current error signal and outputs a compensated adapter current error signal. The adapter current sense voltage, or a high pass filtered version thereof, is subtracted from the compensated adapter current error signal to produce the voltage error signal provided to the PWM controller. Alternatively, an input voltage, or a high pass filtered version thereof, is added to the compensated adapter current error signal to produce the voltage error signal.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: December 31, 2019
    Assignee: Intersil Americas LLC
    Inventors: Michael Jason Houston, Lei Zhao
  • Patent number: 10498239
    Abstract: A system, power supplies, controller and method for enhanced phase current sharing are disclosed. For example, a power supply for enhanced phase current sharing is disclosed, which includes a plurality of power modules, a communication bus coupled to an input of each power module of the plurality power modules, and an output voltage node coupled to a first side of an inductor of each power module of the plurality of power modules, wherein each power module of the plurality of power modules includes a digital controller coupled to the input of the power module, and an RC circuit enabled to generate a feedback signal, coupled to a second side of the inductor and the output voltage node. In some implementations, the power supply is at least part of a power management integrated circuit (PMIC) or at least part of a power supply formed on a semiconductor IC, wafer, chip or die.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: December 3, 2019
    Assignee: Intersil Americas LLC
    Inventors: Shuai Jiang, Jian Yin, Zhixiang Liang
  • Patent number: 10498229
    Abstract: A method to soft start a charge pump circuit according to embodiments includes enabling switching for a plurality of power transistors, selecting a first switching control signal from a plurality of switching control signals for the selected plurality of power transistors, slowly ramping up a plurality of bootstrap supply voltages associated with the selected plurality of power transistors, driving a gate-to-source voltage of each power transistor of the selected plurality of power transistors at a first predefined level, and determining if the plurality of bootstrap supply voltages are less than a second predefined level. If the plurality of bootstrap supply voltages are less than the second predefined level, the method further includes toggling and thereby selecting a second switching control signal from the plurality of switching control signals for a second selected plurality of power transistors.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: December 3, 2019
    Assignee: Intersil Americas LLC
    Inventors: Eric Magne Solie, Mehul Shah, Bin Li, Paul K. Sferrazza
  • Patent number: 10447027
    Abstract: The present embodiments relate to methods and apparatuses for providing fault protection in a power controller such as a voltage regulator, and particularly protection against reverse over current fault conditions. Some embodiments are capable of distinguishing between different types of reverse over current conditions, such as a high-side short or a normal over voltage condition. In these and other embodiments, fault protection is performed in favor of a load connected to the voltage regulator, rather than components of the voltage regulator itself.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: October 15, 2019
    Assignee: Intersil Americas LLC
    Inventors: Chun Cheung, Mir Mahin, Paul Dackow
  • Publication number: 20190294225
    Abstract: One embodiment is directed towards an encapsulated device. The encapsulated device includes a device, and a first encapsulation covering the device. The first encapsulation has one or more exterior surfaces. One or more recesses in one or more of the exterior surfaces is configured to receive a second encapsulation.
    Type: Application
    Filed: June 7, 2019
    Publication date: September 26, 2019
    Applicant: Intersil Americas LLC
    Inventors: Randolph Cruz, Loyde M. Carpenter, Mark A. Kwoka
  • Patent number: 10418481
    Abstract: One embodiment is directed towards a method. The method includes forming a drift region of a first conductivity type above or in a substrate. The substrate has first and second surfaces. A first insulator is formed over a first portion of the channel, and which has a first thickness. A second insulator is formed over the second portion of the channel, and which has a second thickness that is less than the first thickness. A first gate is formed over the first insulator. A second gate is formed over the second insulator. A body region of a second conductivity type is formed above or in the substrate.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: September 17, 2019
    Assignee: Intersil Americas LLC
    Inventor: Dev Alok Girdhar
  • Publication number: 20190280597
    Abstract: Disclosed herein is a power converter with low step down conversion ratio with improved power conversion efficiency. The power converter includes a first inductor to receive the input voltage, and a second inductor to supply the output voltage to a load. The first inductor and the second inductor are electromagnetically coupled to each other. The power converter further includes a first switch coupled between the first inductor and the second inductor. The first switch is switched according to a pulse having a frequency corresponding to a resonant frequency of (i) a series inductance between the first inductor and the second inductor and (ii) a parallel capacitance across the first switch. The power converter further includes a second switch coupled to the first switch and the second inductor to supply a reference voltage to the second inductor according to another pulse having the frequency.
    Type: Application
    Filed: May 20, 2019
    Publication date: September 12, 2019
    Applicant: Intersil Americas LLC
    Inventors: Sitthipong ANGKITITRAKUL, Jian YIN
  • Patent number: 10401494
    Abstract: An optical proximity detector includes a plurality photodetectors (PDs) and a winner-take-all (WTA) circuit. Each of the PDs has a respective field of view (FOV) and produces a respective analog current detection signal indicative of light incident on and detected by the PD. In an embodiment, the WTA circuit includes a comparator and a multiplexor (MUX). The comparator compares the analog current detection signals produced by the PDs and produces a selection signal in dependence thereon. The MUX receives the analog current detection signals produced by the PDs and outputs one of the analog current detection signals in dependence on the selection signal produced by the comparator. Circuitry, which is shared by the PDs, produces a digital detection signal corresponding to the one of the analog current detection signals output by the MUX. Such design can be used to reduce power consumption, size and cost of an optical proximity detector.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: September 3, 2019
    Assignee: Intersil Americas LLC
    Inventor: Manoj Bikumandla
  • Patent number: 10348204
    Abstract: An electronic system, DC-DC voltage converter, method of operating a buck-boost DC-DC converter, and method for power mode transitioning in a DC-DC voltage converter are disclosed. For example, one method includes receiving a compensated error signal associated with an output voltage of the DC-DC voltage converter, determining a power mode of operation of the DC-DC voltage converter, and if the power mode of operation is a first mode, outputting a first control signal to regulate the output voltage of the DC-DC voltage converter. If the power mode of operation is a second mode, outputting a second control signal to regulate the output voltage of the DC-DC voltage converter, and if the power mode of operation is a third mode, outputting a third control signal to regulate the output voltage of the DC-DC voltage converter.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: July 9, 2019
    Assignee: Intersil Americas LLC
    Inventor: Michael Jason Houston
  • Patent number: 10326354
    Abstract: An embodiment pertains to a method including determining if an amplitude of an error signal has entered steady state. If the amplitude of the error signal has not entered steady state, then amplify with a high gain the amplitude of the AC component of the error signal. If the amplitude of the error signal has entered steady state, then initiate a timer. Determining if the amplitude of the error signal has remained in steady state while the timer runs. If the amplitude of the error signal has remained in steady state while the timer runs, then amplify with a low gain the amplitude of the AC component of the error signal.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: June 18, 2019
    Assignee: Intersil Americas LLC
    Inventor: David L. Beck
  • Patent number: 10326365
    Abstract: One embodiment pertains to a method including transitioning a logic state of at least one enable signal. A first power transistor begins to turn off. A parameter level of the input of the first power transistor is directly sensed. A second power transistor is turned off when the parameter level is less than a threshold level.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: June 18, 2019
    Assignee: Intersil Americas LLC
    Inventors: Alexandro Leoncini, Edward Kohler, Timmy Lok
  • Patent number: 10317965
    Abstract: One embodiment is directed towards an encapsulated device. The encapsulated device includes a device, and a first encapsulation covering the device. The first encapsulation has one or more exterior surfaces. One or more recesses in one or more of the exterior surfaces is configured to receive a second encapsulation.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: June 11, 2019
    Assignee: INTERSIL AMERICAS LLC
    Inventors: Randolph Cruz, Loyde M. Carpenter, Jr., Mark A. Kwoka
  • Patent number: RE47503
    Abstract: Photodetectors, methods for use in manufacturing photodetectors, and systems including photodetectors, are described herein. In an embodiment, a photodetector includes a plurality of photodiode regions, at least some of which are covered by an optical filter. A plurality of metal layers are located between the photodiode regions and the optical filter. The metal layers include an uppermost metal layer that is closest to the optical filter and a lowermost metal layer that is closest to the photodiode regions. One or more inter-level dielectric layers separate the metal layers from one another. Each of the metal layers includes one or more metal portions and one or more dielectric portions. The uppermost metal layer is devoid of any metal portions underlying the optical filter.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: July 9, 2019
    Assignee: INTERSIL AMERICAS LLC
    Inventors: Kenneth Dyer, Eric Lee, Xijian Lin