Patents Assigned to Micrel, Incorporated
  • Patent number: 9490769
    Abstract: A micromechanical device includes a substrate, a micromechanical structure supported by the substrate and configured for overtone resonant vibration relative to the substrate, and a plurality of electrodes supported by the substrate and spaced from the micromechanical structure by respective gaps. The plurality of electrodes include multiple drive electrodes configured relative to the micromechanical structure to excite the overtone resonant vibration with a differential excitation signal, or multiple sense electrodes configured relative to the micromechanical structure to generate a differential output from the overtone resonant vibration.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: November 8, 2016
    Assignee: Micrel, Incorporated
    Inventors: Wan-Thai Hsu, Guohong He, John Ryan Clark
  • Patent number: 9431993
    Abstract: A device includes a substrate, an electrode supported by the substrate, an anchor supported by the substrate, and a composite structure supported by the anchor, disposed adjacent the electrode, and configured for resonant vibration. The composite structure includes an external layer and an internal dielectric region covered by the external layer.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: August 30, 2016
    Assignee: MICREL, INCORPORATED
    Inventors: Wan-Thai Hsu, John Ryan Clark
  • Patent number: 9266722
    Abstract: Disclosed herein are MEMS resonator device designs and fabrication techniques that provide protection against electrostatic charge imbalances. In one aspect, a MEMS resonator device includes a substrate, an electrode including a first microstructure supported by the substrate, a resonant element including a second microstructure spaced from the first microstructure by a gap for resonant displacement of the second microstructure within the gap during operation, and a disabled shunt coupled to the electrode or the resonant element. The disabled shunt is disabled to enable the resonant displacement but otherwise configured to protect against damage from an electrostatic charge imbalance before the operation of the MEMS resonator device.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: February 23, 2016
    Assignee: Micrel, Incorporated
    Inventors: Barry D. Wissman, Andrew R. Brown, John R. Clark
  • Patent number: 8878633
    Abstract: A micromechanical device includes a substrate, a micromechanical structure supported by the substrate and configured for overtone resonant vibration relative to the substrate, and a plurality of electrodes supported by the substrate and spaced from the micromechanical structure by respective gaps. The plurality of electrodes include multiple drive electrodes configured relative to the micromechanical structure to excite the overtone resonant vibration with a differential excitation signal, or multiple sense electrodes configured relative to the micromechanical structure to generate a differential output from the overtone resonant vibration.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: November 4, 2014
    Assignee: Micrel, Incorporated
    Inventors: Wan-Thai Hsu, Guohong He, John Ryan Clark
  • Publication number: 20140113396
    Abstract: Disclosed herein are MEMS resonator device designs and fabrication techniques that provide protection against electrostatic charge imbalances. In one aspect, a MEMS resonator device includes a substrate, an electrode including a first microstructure supported by the substrate, a resonant element including a second microstructure spaced from the first microstructure by a gap for resonant displacement of the second microstructure within the gap during operation, and a disabled shunt coupled to the electrode or the resonant element. The disabled shunt is disabled to enable the resonant displacement but otherwise configured to protect against damage from an electrostatic charge imbalance before the operation of the MEMS resonator device.
    Type: Application
    Filed: December 31, 2013
    Publication date: April 24, 2014
    Applicant: Micrel, Incorporated
    Inventors: Barry D. Wissman, Andrew R. Brown, John R. Clark
  • Patent number: 8686802
    Abstract: A method of configuring a device comprising a MEMS resonator includes initiating operation of the device, estimating a first parameter of the MEMS resonator based on the initiated operation, the first parameter not varying with the bias voltage, monitoring the operation of the device at a plurality of levels of the bias voltage, calculating a second parameter of the MEMS resonator based on the monitored operation, the second parameter varying with the bias voltage, determining an operational level of the bias voltage based on the estimated first parameter and the calculated second parameter, and configuring the device in accordance with the determined operational level of the bias voltage.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: April 1, 2014
    Assignee: Micrel, Incorporated
    Inventors: Andrew Robert Brown, John Ryan Clark, Wan-Thai Hsu, Graham Yorke Mostyn, William Cochrane Ingle
  • Patent number: 8633552
    Abstract: Disclosed herein are MEMS resonator device designs and fabrication techniques that provide protection against electrostatic charge imbalances. In one aspect, a MEMS resonator device includes a substrate, an electrode including a first microstructure supported by the substrate, a resonant element including a second microstructure spaced from the first microstructure by a gap for resonant displacement of the second microstructure within the gap during operation, and a disabled shunt coupled to the electrode or the resonant element. The disabled shunt is disabled to enable the resonant displacement but otherwise configured to protect against damage from an electrostatic charge imbalance before the operation of the MEMS resonator device.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: January 21, 2014
    Assignee: Micrel, Incorporated
    Inventors: Barry D. Wissman, Andrew R. Brown, John R. Clark
  • Patent number: 8144760
    Abstract: Noise reducing circuitry may be included in a pulse width modulation circuit. The pulse width modulation circuit may include a comparator adapted to receive an analog signal and a sawtooth signal and to compare such signals to generate a pulse width output. In general, the noise reducing circuitry may include a sawtooth signal generating circuit configured to generate a sawtooth signal including an up ramp and a sawtooth signal including a down ramp. A control circuit may be coupled to the sawtooth signal generating circuit for controlling the sawtooth signal generating circuit based on whether a relatively narrow or relatively wide pulse width is to be output by the pulse width modulation circuit. Methods for reducing noise in a pulse width modulation circuit may generally involve dynamically controlling a direction of ramp of a sawtooth signal that is to be input to the comparator of the pulse width modulation circuit.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: March 27, 2012
    Assignee: Micrel, Incorporated
    Inventor: Philip Yee
  • Patent number: 8095105
    Abstract: A single chip superhetrodyne AM receiver is disclosed herein. To compensate for process variations in the implementation of the IC, bias currents setting the operating conditions for various amplifiers and other components in the system are adjusted based on frequency control signals in a PLL circuit in the local oscillator. Since the magnitude of the control signal reflects the process variations, the bias currents are adjusted based on the control signal to offset these variations in other portions of the receiver. To further improve the signal to noise ratio of the receiver, the IF filter is tuned within a range so as not to include any integer multiple or integer divisor of the timing reference frequency. Various techniques are described for enabling a complete superhetrodyne AM receiver to be implemented on a single chip which receives an antenna input signal and outputs a digital data signal.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: January 10, 2012
    Assignee: Micrel, Incorporated
    Inventors: Joseph S. Elder, Joseph T. Yestrebsky, Mohammed D. Islam
  • Patent number: 8022736
    Abstract: A line driver includes current sources and resistors that form a bridge circuit in which a bridge resistor is connected between an internal node and ground, and a series resistor connected between the internal node and the driver's output node. The internal node is connected to receive a unit current from a first stage transistor, and the output node is connected to receive an amplified current from a second stage transistor that is N times the unit current. The bridge resistor is formed with a resistance value set such that the voltages at the internal node and the output node are equal, i.e., such that no current flows through the series resistor. The resistance value of the series resistor is thus adjustable to optimize output impedance in a manner independent of the driver's gain. An echo cancellation circuit is utilized to eliminate noise from two associated line drivers.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: September 20, 2011
    Assignee: Micrel, Incorporated
    Inventors: Menping Chang, Soon Lim
  • Patent number: 7853224
    Abstract: A fast settling AGC system includes a “fast settle” comparator that facilitates fast settling of strong radio receiver output signals from a maximum to an intermediate voltage level at the start of each transmission burst, and a “normal” AGC comparator that further settles the output signal from the intermediate voltage level to a desired target output voltage level at a slower “normal” rate. The gain control signal components generated by both the “fast settle” comparator and the “normal” AGC comparator are summed and applied to the gain control terminal of a variable gain amplifier. The gain control signal component generated by the “fast settle” comparator has a higher current level than the gain control signal component generated by the “normal” comparator, but is terminated when receiver output signal drops to the intermediate voltage level.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: December 14, 2010
    Assignee: Micrel, Incorporated
    Inventor: George R. Exeter
  • Patent number: 7843147
    Abstract: An LED driver circuit may include dimming circuitry. In particular, the LED driver circuit may include a switching converter, an LED and a switch. The LED may be electrically connected to the switching converter and the switch may be connected in parallel with the LED. The switching converter and/or the switch may be configured to be controlled to achieve dimming of the LED. Current may be supplied to the LED and the switch may be turned on and off to dim the LED. The switching converter coupled to the LED may include a switching element in series with an inductor and the LED. In such case, the switching element may be turned on to supply current to the LED and the inductor, and the switch may be turned on and off to dim the LED.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: November 30, 2010
    Assignee: Micrel, Incorporated
    Inventor: Steven Chenetz
  • Patent number: 7843019
    Abstract: In mixed-component, mixed-signal, semiconductor devices, selective seal ring isolation from the substrate and its electrical potential is provided in order to segregate noise sensitive circuitry from electrical noise generated by electrically noisy circuitry. Appropriate predetermined sections of such a mixed use chip are isolated from the substrate through a non-ohmic contact with the substrate without compromising reliability of the chip's isolation from scribe region contamination.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: November 30, 2010
    Assignee: Micrel, Incorporated
    Inventors: Shekar Mallikarjunaswamy, Martin Alter
  • Patent number: 7835470
    Abstract: A slice level reference generator and method for performing improved data slicing operations when gaps are present in a data stream is disclosed that involves applying a nominal reference signal to the comparator the during signal gaps. In one embodiment, a receiver circuit includes a slice level detector and a comparator that operate in a conventional manner, and control circuitry that utilizes a signal detector and a switch to store a slice level reference signal generated by the slice level detector during a first signal burst, and to apply the stored reference signal to the comparator during signal gaps. In one embodiment a timer circuit is used to detect signal gaps. In another embodiment a predetermined fixed reference signal is applied to the comparator during signal gaps.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: November 16, 2010
    Assignee: Micrel, Incorporated
    Inventor: George R. Exeter
  • Patent number: 7759759
    Abstract: An integrated circuit includes a high voltage NPN bipolar transistor and a low voltage device. The NPN bipolar transistor includes a lightly doped p-well as the base region of the transistor while the low voltage devices are built using standard, more heavily doped p-wells. By using a process including a lightly doped p-well and a standard p-well, high and low voltage devices can be integrated onto the same integrated circuit. In one embodiment, the lightly doped p-well and the standard p-well are formed by performing ion implantation using a first dose to form the lightly doped p-well, masking the lightly doped p-well, and performing ion implantation using a second dose to form the standard p-well. The second dose is the difference of the dopant concentrations of the lightly doped p-well and the standard p-well. Other high voltage devices can also be built by incorporating the lightly doped p-well structure.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: July 20, 2010
    Assignee: Micrel Incorporated
    Inventor: Hideaki Tsuchiko
  • Patent number: 7746150
    Abstract: A fail-safe differential receiver having a differential amplifier adapted to receive first and second differential input signals and generate a differential voltage. A peak detector is coupled to the differential amplifier for generating a detect signal and a comparator is coupled to the peak detector for comparing the detect signal to a threshold voltage and providing a comparison signal. A directing circuit is coupled to the differential amplifier for receiving the first and second differential input signals and is coupled to the comparator for receiving the comparison signal. An output amplifier is coupled to the directing circuit. The directing circuit selectively directs the first and second differential input signals to the output amplifier as a function of the value of the comparison signal from the comparator.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: June 29, 2010
    Assignee: Micrel, Incorporated
    Inventors: Thomas S. Wong, Uwe Biswurm, Bernd Neumann
  • Patent number: 7738225
    Abstract: A circuit and method for limiting the power supplied to a load are provided. The circuit and method prevent power supplied to the load from exceeding a power threshold for a programmable amount of time specified in a timer. The circuit includes a voltage controlled current source coupled to the load. A current multiplier divider is coupled to the voltage controlled current source and a timer is coupled to the load. A comparator with an adaptive threshold is coupled to the current multiplier divider and the input for controlling the timer to limit the power supplied to the load.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: June 15, 2010
    Assignee: Micrel, Incorporated
    Inventor: Boris Briskin
  • Publication number: 20100134180
    Abstract: A thermal sensor for an integrated circuit including a bandgap reference circuit. The thermal sensor includes a comparator that compares a temperature dependent voltage generated by the bandgap reference circuit to a temperature independent voltage, where both temperatures are referenced to the bandgap reference voltage generated by the bandgap reference circuit. The thermal sensor generates a digital output control signal based on a predetermined relationship between the temperature dependent voltage and the temperature independent reference voltage. When used as a thermal shutdown circuit, the comparator generates a thermal shut-down signal when the dependent temperature voltage decreases (or increases) with rising system temperature to equal to the temperature independent reference voltage. The comparator is implemented using an operational amplifier that is connected to existing circuitry associated with the bandgap reference circuit.
    Type: Application
    Filed: December 3, 2008
    Publication date: June 3, 2010
    Applicant: Micrel, Incorporated
    Inventors: Paul AD Smith, Paul Wilson
  • Patent number: 7724068
    Abstract: A thermal sensor for an integrated circuit including a bandgap reference circuit. The thermal sensor includes a comparator that compares a temperature dependent voltage generated by the bandgap reference circuit to a temperature independent voltage, where both temperatures are referenced to the bandgap reference voltage generated by the bandgap reference circuit. The thermal sensor generates a digital output control signal based on a predetermined relationship between the temperature dependent voltage and the temperature independent reference voltage. When used as a thermal shutdown circuit, the comparator generates a thermal shut-down signal when the dependent temperature voltage decreases (or increases) with rising system temperature to equal to the temperature independent reference voltage. The comparator is implemented using an operational amplifier that is connected to existing circuitry associated with the bandgap reference circuit.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: May 25, 2010
    Assignee: Micrel, Incorporated
    Inventors: Paul AD Smith, Paul Wilson
  • Publication number: 20100066405
    Abstract: A line driver includes current sources and resistors that form a bridge circuit in which a bridge resistor is connected between an internal node and ground, and a series resistor connected between the internal node and the driver's output node. The internal node is connected to receive a unit current from a first stage transistor, and the output node is connected to receive an amplified current from a second stage transistor that is N times the unit current. The bridge resistor is formed with a resistance value set such that the voltages at the internal node and the output node are equal, i.e., such that no current flows through the series resistor. The resistance value of the series resistor is thus adjustable to optimize output impedance in a manner independent of the driver's gain. An echo cancellation circuit is utilized to eliminate noise from two associated line drivers.
    Type: Application
    Filed: November 24, 2009
    Publication date: March 18, 2010
    Applicant: Micrel, Incorporated
    Inventors: Menping Chang, Soon Lim