Patents Examined by Alexander S Noguerola
  • Patent number: 11782015
    Abstract: An electrochemical oxygen sensor with a long service life is provided. The electrochemical oxygen sensor according to the present invention includes a positive electrode, a negative electrode, and an electrolyte solution, and the negative electrode contains tin or a tin alloy, the electrolyte solution is an aqueous solution obtained by dissolving at least citric acids, the aqueous solution contains an alkali metal, a total content of the citric acids in the electrolyte solution is 2.1 mol/L or higher, a content of the alkali metal in the electrolyte solution is 0.1 to 1.6 times the total content of the citric acids, the electrolyte solution has a pH of 3.9 to 4.6, and when a volume of the electrolyte solution is x (ml) and a content of tin contained in the negative electrode is y (g), x/y?0.3 (ml/g) holds true.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: October 10, 2023
    Assignee: Maxell, Ltd.
    Inventor: Naohisa Kitazawa
  • Patent number: 11782021
    Abstract: An electrolyte concentration measurement device includes: an ion-selective electrode supplied with the liquid; a reference electrode serving as a reference for a potential; a potential measuring unit configured to acquire a potential of the ion-selective electrode; a concentration calculation unit configured to calculate a concentration of ions contained in the liquid based on the potential acquired by the potential measuring unit; a potential monitoring unit configured to monitor a potential of the ion-selective electrode and generate a potential response curve; a timing signal acquisition unit configured to acquire a timing signal related to a timing of various operations; and a potential response curve analysis unit configured to detect an abnormality sign of a device based on a relationship between the potential response curve and the timing signal.
    Type: Grant
    Filed: September 2, 2019
    Date of Patent: October 10, 2023
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Atsushi Kishioka, Tetsuyoshi Ono
  • Patent number: 11768174
    Abstract: To sense the translocation of a molecule through a nanopore, there is directed to an inlet of the nanopore, having a nanopore fluidic resistance, RP, a molecule disposed in a cis fluidic ionic solution having a cis fluidic access resistance, RC. The molecule is caused to translocate through the nanopore from the inlet of the nanopore to an outlet of the nanopore and to a trans fluidic ionic solution having a trans fluidic access resistance, RT. The trans fluidic access resistance, RT, is of the same order of magnitude as the nanopore fluidic resistance, RP, and both RT and RP are at least an order of magnitude greater than the cis fluidic access resistance, RC. An indication of local electrical potential is produced at a site within the nanopore sensor that is on the trans fluidic ionic solution-side of the nanopore, to sense translocation of the molecule through the nanopore.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: September 26, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: Ping Xie, Charles M. Lieber
  • Patent number: 11761917
    Abstract: Sensors having an advantageous design and methods for fabricating such sensors are generally provided. Some sensors described herein comprise pairs of electrodes having radial symmetry, pairs of nested electrodes, and/or nanowires. Some embodiments relate to fabricating electrodes by methods in which nanowires are deposited from a fluid contacted with a substrate in a manner such that it evaporates and is replenished.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: September 19, 2023
    Assignee: NanoDX, Inc.
    Inventors: Farhad Khosravi, David Bastable, Sergey A. Dryga
  • Patent number: 11761961
    Abstract: A biosensing chip is provided, including a substrate having a photoelectric conversion material, and an electrode disposed on the substrate and including two contact portions and an electrode pattern, wherein the photoelectric conversion material is a monocrystalline silicon material, and the electrode pattern includes micro-electrodes in the form of interdigitated sawtooth. The biosensing chip and the method using the same may distinguish a lesion site of cancer cells and the degree of cancer lesions.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: September 19, 2023
    Assignee: NATIONAL CHUNG CHENG UNIVERSITY
    Inventors: Hsiang-Chen Wang, Chun-Ping Jen, Hong-Wei Fan, Shin-Che Wang
  • Patent number: 11761922
    Abstract: A method and a sensor for detecting L-arginine are provided. The method includes synthesizing ferrocene-functionalized hexadecapeptide dithiocyclopentane (FC-P16 Peptide), preparing a polypeptide composite membrane-modified electrode (FC-P16 Peptide/AuE), detecting L-Arg and other steps. The results show that the polypeptide composite membrane-modified electrode (FC-P16 Peptide/AuE) exhibits excellent electrochemical response properties to L-Arg. In 10 mmol/L phosphate-buffered saline (PBS, pH=7.4), the DPV response peak current of the polypeptide composite membrane-modified electrode has an excellent linear relationship with the L-Arg concentration of 1.0×10?13 mol/L to 1.0×10?7 mol/L, with a detection limit of 1.0×10?13 mol/L. With prominent reproducibility, repeatability and selectivity, the modified electrode has potential application in life science and nutritional health.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: September 19, 2023
    Assignee: CHANGSHA UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Zhong Cao, Ningtao Zhou, Li Zhou, Qin Zhu, Jinglin He, Zhongliang Xiao, Yumin He, Zemeng Feng, Yulong Yin
  • Patent number: 11754524
    Abstract: In one aspect, a biological sequencing device comprising a cartridge configured to be removed from the instrument is disclosed. In various embodiments the cartridge can include one or more capillaries suitable for capillary electrophoresis, a reservoir and a pump. In various embodiments the reservoir can contain a separation matrix. In various embodiments the pump can load a capillary with separation matrix. In another aspect the biological sequencing device can include one or more capillaries and an integrated valve assembly. In various embodiments the integrated valve assembly can provide a polymer to the one or more capillaries.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: September 12, 2023
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Ian Walton, Robert Cobene, Alexander Dukhovny, Adam Sannicandro, John Dixon, Achim Karger, Dan Kline
  • Patent number: 11747300
    Abstract: Provided is a capillary array unit configured to facilitate attaching/detaching operation. A capillary array unit includes a capillary, a load header provided at one end of the capillary, a capillary head provided at the other end of the capillary, a detection section provided at a portion of the capillary, and a holder holding the capillary. The holder includes a first holding section holding the capillary in a curved shape, a second holding section linearly holding the capillary, and a guide to move the second holding section in a predetermined direction.
    Type: Grant
    Filed: September 2, 2019
    Date of Patent: September 5, 2023
    Assignee: Hitachi High-Tech Corporation
    Inventors: Katsuhiro Aritome, Takeshi Ooura, Shunichi Kariya
  • Patent number: 11740201
    Abstract: A system includes a system housing including an inlet, at least one gas sensor responsive to a first analyte gas other than oxygen within the system housing and in fluid connection with the inlet, and a sensor responsive to oxygen within the system housing and in fluid connection with the inlet. The sensor responsive to oxygen is formed to be chemically separate from the at least one gas sensor responsive to the first analyte gas other than oxygen. The sensor responsive to oxygen is responsive to a change in the concentration of oxygen arising from creation of a driving force in the vicinity of the inlet to provide an indication of a state of a transport path between the inlet of the system and the at least one gas sensor responsive to the first analyte gas other than oxygen.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: August 29, 2023
    Assignee: MSA Technology, LLC
    Inventors: Towner Bennett Scheffler, Michael Alvin Brown, Brian Keith Davis
  • Patent number: 11740216
    Abstract: A gas detection apparatus and method for measuring humidity using an electrochemical gas sensor. The gas detection apparatus comprises an electrolyte-based electrochemical gas sensor and a controller configured to measure the average humidity value within an ambient environment over a period of time. The average ambient humidity value over the period of time is determined based on the average rate of change over the period of time of the electrolyte concentration within the electrolyte gas sensor of the gas detection apparatus over the period and the average temperature in the ambient environment over the period of time. The gas sensing apparatus may be configured to communicate the average ambient humidity value within the ambient environment to a second electrochemical gas sensor or a second gas detection apparatus within the same ambient environment.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: August 29, 2023
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Keith Pratt, Tom Gurd
  • Patent number: 11733199
    Abstract: The present invention relates to the technical field of glucose detection, and in particular to an enzyme-free glucose sensor and a fabrication method and use thereof. In the present invention, Magnolia grandiflora L. leaves are used as a carbon-based catalyst, which serve as a base material to well disperse nickel atoms and improve the catalytic activity of a material. A prepared Ni@NSiC nano-molecular layer is used to modify a pretreated white glassy carbon electrode (GCE) to obtain a highly-active material-modified working electrode Ni@NSiC/GCE, and then glucose is detected through cyclic voltammetry (CV) and chronoamperometry (CA).
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: August 22, 2023
    Assignee: Jiangsu University
    Inventors: Quan Bu, Jin Cai, Hairong Long, Mei Wang, Hanping Mao
  • Patent number: 11733205
    Abstract: The present invention aims to provide an electrophoresis apparatus which makes it possible to execute protein analysis with a high throughput. The electrophoresis apparatus according to the present invention is equipped with a capillary array which is configured by arraying a plurality of capillaries, a measurement light irradiation unit which irradiates with measurement light, a first lens array which includes a plurality of first lenses which are arrayed in correspondence with the plurality of capillaries, a second lens array which includes a plurality of second lenses which are arrayed in correspondence with the plurality of capillaries, and a light receiving unit which receives light which is incident upon the capillaries via the first lens array from the measurement light irradiation unit via the second lens array.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: August 22, 2023
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Satoshi Takahashi, Ryoji Inaba, Takashi Anazawa, Tomoyuki Sakai, Yusuke Goto
  • Patent number: 11733200
    Abstract: An electrochemical oxygen sensor with a long service life is provided. The electrochemical oxygen sensor according to the present invention includes a positive electrode, a negative electrode, and an electrolyte solution, and the electrolyte solution contains a chelating agent and ammonia, and a concentration of the ammonia in the electrolyte solution is 0.01 mol/L or higher. Citric acid is preferable as the chelating agent contained in the electrolyte solution. Also, the negative electrode preferably contains an Sn alloy.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: August 22, 2023
    Assignee: MAXELL, LTD.
    Inventors: Naohisa Kitazawa, Emi Kuromatsu, Tadashi Kakeya
  • Patent number: 11723553
    Abstract: Method and system for detecting and/or quantifying ?9-tetrahydrocannibinol (THC) in exhaled breath. In one embodiment, the method involves providing an electrochemical sensing element, the electrochemical sensing element including a working electrode, and also providing a filter that traps THC in exhaled breath. Next, a subject exhales onto the filter, whereby at least some of the THC, if present, is trapped in the filter. Next, the filter is washed with an eluent, whereby at least some of the THC trapped in the filter is eluted in an eluate. Next, the eluate is deposited onto the working electrode of the electrochemical sensing element, and the eluate is dried, whereby any THC present is immobilized on the working electrode. Next, an electrolytic solution is delivered to the electrochemical sensing element, and the THC immobilized on the working electrode is directly electrochemically detected and/or quantified using a pulse voltammetry technique, such as square-wave voltammetry.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: August 15, 2023
    Assignee: GINER, INC.
    Inventors: Badawi M. Dweik, Avni A. Argun, Anahita Karimi
  • Patent number: 11725229
    Abstract: A method of detecting a state of a lipid membrane in a cell of a nanopore based sequencing chip is disclosed. A lipid membrane is coupled with an integrating capacitor, wherein the lipid membrane is between a working electrode and a counter electrode. An alternating current (AC) voltage is applied to the counter electrode. A voltage across the integrating capacitor is periodically sampled by an analog-to-digital converter (ADC). A change in the sampled voltage across the integrating capacitor in response to an intermediate change in the AC voltage is determined. A state of the lipid membrane is determined based on the determined change in the sampled voltage across the integrating capacitor in response to the intermediate change in the AC voltage.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: August 15, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventor: Ashraf Wahba
  • Patent number: 11726058
    Abstract: A system includes a housing, a cartridge retainer disposed within the housing, a detection assembly disposed within the housing, and a reagent tray holder movably disposed in the housing. The cartridge retainer configured to receive a capillary cartridge having a capillary. The detection assembly includes at least one emitter, a first detector, and a second detector. The detection assembly is configured to transition between a first configuration, in which the first detector detects a first output of the at least one emitter, and a second configuration, in which the second detector detects a second output of the at least one emitter. The reagent tray holder is configured to move relative to the cartridge retainer to place the capillary of the capillary cartridge in fluid communication with a reagent volume.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: August 15, 2023
    Assignee: ProteinSimple
    Inventors: David J. Roach, Tom Weisan Yang, Hui Xu
  • Patent number: 11719666
    Abstract: A reference electrode system for a pH-sensor system includes: a first junction having a membrane with a sealed side; a reference electrode, the reference electrode and/or an electrically conducting wire of the reference electrode being covered completely except for an end portion of the reference electrode, by a sleeve; and a tube that is arranged, at least partly, around the reference electrode, the electrically conducting wire, and the sleeve, the tube having a closed end which is arranged near the end portion of the reference electrode.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: August 8, 2023
    Assignee: ABB Schweiz AG
    Inventors: Benjamin Carr, Kenton Knight
  • Patent number: 11707748
    Abstract: Devices, systems, and methods for applying a dielectrophoretic force on a particle include: a cell defining at least one channel for confining the particle; and a first electrode and a second electrode electrically isolated from the first electrode, at least one of the first and second electrodes being formed from a two-dimensional (2D) material providing an atomically sharp edge. The first and second electrodes are arranged sufficiently close to one another and sufficiently close to the channel such that application of a sufficient voltage across the first and second electrodes generates an electric field in at least part of the channel, the electric field having an electric field gradient sufficient to apply the dielectrophoretic force on the particle in the channel.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: July 25, 2023
    Inventors: Sang-Hyun Oh, Steven John Koester
  • Patent number: 11709148
    Abstract: Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: July 25, 2023
    Assignee: The Regents of the University of California
    Inventors: Nader Pourmand, Boaz Vilozny, Paolo Actis, R. Adam Seger
  • Patent number: 11709147
    Abstract: The present invention provides an electrolyte measuring device that makes it possible to detect failure in the device with a high degree of accuracy. The electrolyte measuring device has: an ion-selective electrode to which an ion solution including ions is supplied; a reference electrode; a measurement section to measure a potential difference between the ion-selective electrode and the reference electrode; and a current measurement section to measure an electric current flowing in the reference electrode.
    Type: Grant
    Filed: September 2, 2019
    Date of Patent: July 25, 2023
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventor: Satoshi Ozawa