Patents Examined by Alexander S Noguerola
  • Patent number: 11709158
    Abstract: A gas detection apparatus and method for measuring humidity using an electrochemical gas sensor. The gas detection apparatus comprises an electrolyte-based electrochemical gas sensor and a controller configured to measure the average humidity value within an ambient environment over a period of time. The average ambient humidity value over the period of time is determined based on the average rate of change over the period of time of the electrolyte concentration within the electrolyte gas sensor of the gas detection apparatus over the period and the average temperature in the ambient environment over the period of time. The gas sensing apparatus may be configured to communicate the average ambient humidity value within the ambient environment to a second electrochemical gas sensor or a second gas detection apparatus within the same ambient environment.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: July 25, 2023
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Keith Pratt, Tom Gurd
  • Patent number: 11692961
    Abstract: The present disclosure relates to a sensor element for a potentiometric sensor, comprising a substrate formed from a metal alloy and an ion-selective enamel layer arranged on the substrate, wherein the metal alloy comprises at least one transition metal and wherein the ion-selective enamel layer contains a proportion of an oxide of the transition metal, and wherein an electrically conductive transition zone is arranged between the substrate and the enamel layer and contains the transition metal in a plurality of different oxidation states.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: July 4, 2023
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Thomas Wilhelm, Matthäus Speck, Michael Hanko
  • Patent number: 11692967
    Abstract: An electrophoretic device for detecting biomarkers in collected bodily fluid and methods of using the same.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: July 4, 2023
    Assignee: Vital Biosciences Inc.
    Inventors: Mounir A. Koussa, Calvin Domenico, Ronald L. Green, Joshua John Forman, Andrew Ward, Lisa Caldwell
  • Patent number: 11674132
    Abstract: The present disclosure relates to fluidic systems and devices for processing, extracting, or purifying one or more analytes. These systems and devices can be used for processing samples and extracting nucleic acids, for example by isotachophoresis. In particular, the systems and related methods can allow for extraction of nucleic acids, including non-crosslinked nucleic acids, from samples such as tissue or cells. The systems and devices can also be used for multiplex parallel sample processing.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: June 13, 2023
    Assignee: Purigen Biosystems, Inc.
    Inventors: Lewis A. Marshall, Amy L. Hiddessen, Nathan P. Hoverter, Klint A. Rose, Juan G. Santiago
  • Patent number: 11674921
    Abstract: An online calibration system for an electrochemical sensor. The calibration system comprises a calibration electrode coupled with a redox species, where the redox species is configured to control a pH of a reference solution local to the calibration electrode, such that when a voltammetric signal is applied to the calibration electrode the output generated from the calibration system is determined by the local environment pH. The output signal from the calibration system is used to calibrate a reference potential generated by a reference system of the electrochemical sensor to correct for drift in the reference potential when the electrochemical sensor is being used. The calibration electrode may be disposed in a reference cell of the electrochemical sensor.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: June 13, 2023
    Assignee: ANB Sensors Ltd
    Inventors: Steven A. Gahlings, Nathan Lawrence, Kay Louise McGuinness
  • Patent number: 11667880
    Abstract: A pH sensor for a single-use container includes a plunger sleeve configured to couple to a flange of the single-use container. A plunger is axially movable within the plunger sleeve between a storage position and an operating position. A pH sensing element coupled to the plunger wherein the pH element is disposed within a storage chamber in the storage position and is configured to be exposed to an interior of the single-use container in the operating position. In one example, a temperature sensitive element is disposed within the pH sensor and configured to sense temperature proximate the pH sensing element. In another example, a lock member is coupled to the plunger, where the lock member has a locked position and an unlocked position, the lock member being configured to inhibit movement of the plunger when in the locked position. In yet another example, the plunger includes at least one filling channel that allows access to a reference fill chamber when the plunger is in a filling position.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: June 6, 2023
    Assignee: ROSEMOUNT INC.
    Inventors: Jinbo Hu, Andrew S. Dierker, Rick J. Sumrall, Tyrel L. Ruch, John W. Simon, Ryan L. Bowlds
  • Patent number: 11668674
    Abstract: An elution apparatus and a detection apparatus are described. The elution apparatus includes: a sample trap for trapping a sample; and one or more pumps and/or valves to move a liquid eluent and a liquid eluate, wherein the eluate includes an extracted portion of the sample that is extracted by the eluent. The detection apparatus includes: a capillary having a low-voltage (LV) end portion to receive a sample; and a conductivity detector coupled to a high-voltage (HV) end portion of the capillary to generate signals based on conductivity of a monitored portion of the capillary in the HV end portion, wherein the conductivity detector is electrically isolated from the LV end portion.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: June 6, 2023
    Assignee: GREYSCAN PTY LTD
    Inventors: Graham William Lyford, Michael Smith, Alistair Stuart Webb, Adam John Cusick, Leigh Ryan, Ian Emil Sohn
  • Patent number: 11656192
    Abstract: A high-gain and low-noise negative feedback control (“feedback control”) system can detect charge transfer in quantum systems at room temperatures. The feedback control system can attenuate dissipative coupling between a quantum system and its thermodynamic environment. The feedback control system can be integrated with standard commercial voltage-impedance measurement system, for example, a potentiostat. In one aspect, the feedback control system includes a plurality of electrodes that are configured to electrically couple to a sample, and a feedback mechanism coupled to a first electrode of the plurality of electrodes. The feedback mechanism is configured to detect a potential associated with the sample via the first electrode. The feedback mechanism provides a feedback signal to the sample via a second electrode of the plurality of electrodes, the feedback signal is configured to provide excitation control of the sample at a third electrode of the plurality of electrode.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: May 23, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Chaitanya Gupta, Ross M. Walker, Boris Murmann, Roger T. Howe
  • Patent number: 11650179
    Abstract: Analyte measurement devices and methods of measuring an analyte in a sample. At least one of the methods include: applying an electrical analysis signal to the sample during a measurement time interval (MT), wherein the electrical analysis signal, when transferred into a frequency space, comprises a superposition of two or more non-zero frequency components at least at a sampling time; measuring at least one electrical response signal from the sample; analyzing the electrical response signal; and determining the amount of the analyte in the sample based on the analyzing.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: May 16, 2023
    Assignee: Sanofi
    Inventor: Thomas Klemm
  • Patent number: 11644437
    Abstract: There is provided a nanopore sensor including cis and trans fluidic reservoirs. A nanopore is provided in a support structure separating the cis and trans reservoirs. The nanopore has an inlet in fluidic connection with the cis fluidic reservoir and an outlet in fluidic connection with the trans fluidic reservoir. The cis fluidic reservoir has a fluidic access resistance, RC, the trans fluidic reservoir has a fluidic access resistance, RT, and the nanopore has a fluidic resistance, RP. RP is of the same order of magnitude as RT and both RP and RT are at least an order of magnitude greater than RC. An electrical transduction element is disposed at a nanopore sensor site that exposes the transduction element to the trans reservoir. An electrical circuit is connected to the electrical transduction element for producing an electrical signal indicative of changes in electrical potential local to the trans reservoir.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: May 9, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: Ping Xie, Charles M. Lieber
  • Patent number: 11642559
    Abstract: A corrosion monitoring device includes a sensor assembly and a detector circuit. The sensor assembly includes at least one sensor portion disposed in an interior of a pipe in a fire sprinkler system for sensing corrosion of a wall of the pipe. The detector circuit transmits an electrical signal through the at least one sensor portion, monitors an electrical characteristic of the at least one sensor portion based on the electrical signal, compares at least one of the monitored electrical characteristic and a change in the electrical characteristic of the at least one sensor portion to at least one of a predetermined value and a previously monitored electrical characteristic, determines a corrosion status indicative of at least one of a corrosion level and a rate of corrosion of the pipe wall based on the comparison, and outputs an indication of the corrosion status.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: May 9, 2023
    Assignee: Tyco Fire Products LP
    Inventors: Jeremy Tyler Cogswell, Arash Agan, Cassandra Lyn DeNunzio
  • Patent number: 11639913
    Abstract: A sensor device is disclosed. The sensor device includes a monitor thin film transistor, a reference thin film transistor, and a control unit. The control unit is configured to determine a value measured from a sample based on a differential degree between output current of the reference thin film transistor and output current of the monitor thin film transistor.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: May 2, 2023
    Assignee: TIANMA JAPAN, LTD.
    Inventor: Genshiro Kawachi
  • Patent number: 11635407
    Abstract: Methods, systems and devices that allow independently applied pressures to a BGE reservoir and a sample reservoir for pressure-driven injection that can inject a discrete sample plug into a separation channel that does not require voltage applied to the sample reservoir and can allow for in-channel focusing methods to be used. The methods, systems and devices are particularly suitable for use with a mass spectrometer.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: April 25, 2023
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: John Scott Mellors, Erin Anne Redman, John Michael Ramsey
  • Patent number: 11635404
    Abstract: Methods for manufacturing an electrochemical sensor include forming at least one electrode by printing at least one conductive ink on a surface of at least one substrate. The conductive ink may comprise, e.g., a platinum-group metal, another transition-group metal with a high-temperature melting point, a conductive ceramic material, glass-like carbon, or a combination thereof. The electrochemical sensor may be free of another material over the at least one electrode. An electrochemical sensor, formed according to such methods, may be configured for use in harsh environments (e.g., a molten salt environment). Electrodes of the electrochemical sensor comprise conductive material formed from a printed, conductive ink. In some embodiments, at least a portion of the electrochemical sensor is free of silver, gold, copper, silicon, and polymer materials, such portion being that which is to be exposed to the harsh environment during use of the electrochemical sensor.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: April 25, 2023
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Michael R. Shaltry, Prabhat K. Tripathy, David Estrada
  • Patent number: 11635405
    Abstract: Provided is a method for measuring a component of a biological sample with a biosensor provided with: a capillary for introducing the biological sample; an electrode part including a first electrode system that includes a first working electrode and a first counter electrode in the capillary; and a reagent part disposed so as to be in contact with the electrode part, the reagent part containing an enzyme and a mediator, and the method including a step of starting voltage application for a duration longer than 0 second and up to 0.7 second to the first electrode system within 0 second to 0.5 second after detection of the introduction of the biological sample to obtain a hematocrit value based on a current value obtained thereby.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: April 25, 2023
    Assignee: PHC Holdings Corporation
    Inventors: Shouko Hironaka, Eriko Yoshioka, Daiki Mizuoka, Suguru Sasaki
  • Patent number: 11630098
    Abstract: A single molecule sensing or detecting device includes a first electrode and a second electrode separated from the first electrode by a gap. The first electrode and the second electrode have an opening formed therethrough. At least one of the first electrode and the second electrode is functionalized with a recognition molecule. The recognition molecule has an effective length LI and is configured to selectively bind to a target molecule having an effective length L2. The size of the gap is configured to be greater than L2, but less than or equal to the sum of LI and L2.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: April 18, 2023
    Assignee: ARIZONA BOARD OF REGENTS on behalf of ARIZONA STATE UNIVERSITY
    Inventors: Stuart Lindsay, Peiming Zhang, Yanan Zhao
  • Patent number: 11630078
    Abstract: A biosensor that can perform analysis based on a sample noninvasively collected from a human body is provided. The biosensor comprises an identification substance (38) that binds to a substance to be detected (40), and an electrode (16) charged with a charge of the identification substance (38), comprises an inhibitor (39) that inhibits a substance not to be detected (42) from attaching to at least one of the identification substance (38) and the electrode (16), and detects a change in a charge density of the electrode (16) caused by binding of the substance to be detected (40) to the identification substance (38).
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: April 18, 2023
    Assignee: THE UNIVERSITY OF TOKYO
    Inventors: Toshiya Sakata, Taira Kajisa, Yuya Miyazawa, Yuta Uematsu
  • Patent number: 11624724
    Abstract: The present invention provides methods and devices for detecting and distinguishing various types of gas molecules or volatile organic compounds (VOCs), the methods and devices have enhanced sensing ability; namely response magnitude, sensitivity, detection limit and selectivity (i.e., classification capability). In one embodiment, the present invention provides methods and devices for diagnosing a disease in a subject or a health status of a subject through the detection of VOCs indicative of the disease or health status in question from breath of the subject. In one embodiment, the present invention provides methods and devices for detecting the existence of lung cancer or the stage of lung cancer in a subject through the detection of VOCs indicative of the existence of lung cancer from breath of the subject.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: April 11, 2023
    Assignee: QI DIAGNOSTICS LIMITED
    Inventor: Han Jin
  • Patent number: 11609207
    Abstract: Electrochemical sensors can include at least two electrodes, over which an electrolyte is formed. The electrodes can be isolated from one another in order for reduction/oxidation reactions to occur at the electrodes and for an electric current to flow therebetween. The present disclosure describes the use of a barrier in the electrochemical sensor that is configured to isolate electrodes from one another for the purpose of preventing electrode shorting. Additionally, the physical structure of the barrier can also act as a stencil for shaping the electrodes.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: March 21, 2023
    Assignee: Analog Devices International Unlimited Company
    Inventors: Donal McAuliffe, Rizwan Gill, Alfonso Berduque, Shane Geary, Raymond J. Speer
  • Patent number: 11604157
    Abstract: In a reference electrode for the potentiometric measurement of ion concentrations, comprising a swellable polymer body filled with at least one electrolyte salt and a potential sensing element of the second type located in the polymer body, preferably of the Ag/AgCl type, the polymer body is composed of preferably organic, hydrophobic prepolymer segments, which are three-dimensionally crosslinked by preferably organic, hydrophilic polymer chains.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: March 14, 2023
    Assignee: ERBA TECHNOLOGIES AUSTRIA GMBH
    Inventors: Helmut Offenbacher, Werner Sallegger, Stefan Köstler