Patents Examined by Candice Chan
  • Patent number: 11469176
    Abstract: The present disclosure relates to an electrical fuse (e-fuse) device and a method for forming the electrical fuse device. The vertical e-fuse device includes a fuse link disposed over a semiconductor base. A material of the fuse link and a material of the semiconductor base are the same. The vertical e-fuse device also includes a first bottom anode/cathode region and a second bottom anode/cathode region disposed over the semiconductor base. A bottom portion of the fuse link is sandwiched between the first bottom anode/cathode region and the second anode/cathode region. The vertical e-fuse device further includes a top anode/cathode region disposed over the fuse link.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: October 11, 2022
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Chih-Wei Huang
  • Patent number: 11450793
    Abstract: A semiconductor structure, a method for producing a semiconductor structure and a light emitting device are disclosed. In an embodiment a semiconductor structure includes a plurality of discrete encapsulated semiconductor nanoparticles and a plurality of discrete semiconductor free nanoparticles, wherein the discrete encapsulated semiconductor nanoparticles and the discrete semiconductor free nanoparticles form an agglomerate.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: September 20, 2022
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: James Wyckoff, Joseph Treadway, Kari N. Haley
  • Patent number: 11410926
    Abstract: In the present disclosure, a semiconductor structure includes an Mx-1 layer including a first dielectric layer and first metal features, wherein the first metal features include a first set of first metal features in a first region and a second set of first metal features in a second region, wherein the first set has a first pattern density and the second set has a second pattern density being greater than the first pattern density. The structure further includes a Vx layer disposed over the Mx-1 layer, the Vx layer including first vias contacting the first set of the first metal features. The structure further includes an Mx layer disposed over the Vx layer, the Mx layer including a fuse element, wherein the fuse element has a first thickness in the first region less than a second thickness in the second region.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: August 9, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: An-Jiao Fu, Po-Hsiang Huang, Derek Hsu, Hsiu-Wen Hsueh, Meng-Sheng Chang
  • Patent number: 11393783
    Abstract: A semiconductor device and method utilizing a dummy structure in association with a redistribution layer is provided. By providing the dummy structure adjacent to the redistribution layer, damage to the redistribution layer may be reduced from a patterning of an overlying passivation layer, such as by laser drilling. By reducing or eliminating the damage caused by the patterning, a more effective bond to an overlying structure, such as a package, may be achieved.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: July 19, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Hui Cheng, Po-Hao Tsai, Jing-Cheng Lin
  • Patent number: 11393749
    Abstract: A stacked via structure including a first dielectric layer, a first conductive via, a first redistribution wiring, a second dielectric layer and a second conductive via is provided. The first dielectric layer includes a first via opening. The first conductive via is in the first via opening. A first level height offset is between a top surface of the first conductive via and a top surface of the first dielectric layer. The first redistribution wiring covers the top surface of the first conductive via and the top surface of the first dielectric layer. The second dielectric layer is disposed on the first dielectric layer and the first redistribution wiring. The second dielectric layer includes a second via opening. The second conductive via is in the second via opening. The second conductive via is electrically connected to the first redistribution wiring through the second via opening of the second dielectric layer.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: July 19, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Han Wang, Hung-Jui Kuo, Yu-Hsiang Hu
  • Patent number: 11380762
    Abstract: A method comprises providing a semiconductor alloy layer on a semiconductor substrate, forming a gate structure on the semiconductor alloy layer, forming source and drain regions in the semiconductor substrate on both sides of the gate structure, removing at least a portion of the semiconductor alloy layer overlying the source and drain regions, and forming a metal silicide region over the source and drain regions.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: July 5, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Chao Huang, Yee-Chia Yeo, Chao-Hsiung Wang, Chun-Chieh Lin, Chenming Hu
  • Patent number: 11380773
    Abstract: A semiconductor memory device of an embodiment includes a semiconductor layer; a gate electrode including a first portion, a second portion provided to be spaced apart from the first portion, and a spacer provided between the first portion and the second portion; and a first insulating layer provided between the semiconductor layer and the gate electrode and including a first region containing a ferroelectric, a ferrielectric, or an anti-ferroelectric, a second region containing a ferroelectric, a ferrielectric, or an anti-ferroelectric, and a boundary region provided between the first region and the second region. The first region is positioned between the first portion and the semiconductor layer, the second region is positioned between the second portion and the semiconductor layer, the boundary region is positioned between the spacer and the semiconductor layer, and the boundary region has a chemical composition different from that of the spacer.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: July 5, 2022
    Assignee: Kioxia Corporation
    Inventors: Tsunehiro Ino, Yusuke Higashi, Toshinori Numata, Yuuichi Kamimuta
  • Patent number: 11380730
    Abstract: The invention describes a passive matrix single-color LED display assembly comprising a matrix of row conductor lines and column conductor lines; an array of direct-emitting LED packages, wherein the anode of each LED package is electrically connected to one of the row conductor lines and the cathode of that LED package is connected to one of the column conductor lines; and a driver configured to apply a bias voltage to a row conductor line and to apply a bias voltage to a column conductor line according to an image to be displayed.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: July 5, 2022
    Assignee: LUMILEDS LLC
    Inventors: Florent Monestier, Casey Israel
  • Patent number: 11373933
    Abstract: A semiconductor package includes; a lower semiconductor chip mounted on a lower package substrate, an interposer on the lower package substrate and including an opening, connection terminals spaced apart from and at least partially surrounding the lower semiconductor chip and extending between the lower package substrate and the interposer, a first molding member including a first material and covering at least a portion of a top surface of the lower semiconductor chip and at least portions of edge surfaces of the lower semiconductor chip, wherein the first molding member includes a protrusion that extends upward from the opening to cover at least portions of a top surface of the interposer proximate to the opening, and a second molding member including a second material, at least partially surrounding the first molding member, and covering side surfaces of the first molding member and the connection terminals, wherein the first material has thermal conductivity greater than the second material.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: June 28, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Heeseok Lee, Yunhyeok Im
  • Patent number: 11362276
    Abstract: A phase-change material having specific SiOx doping into special Ge-rich GexSbyTez material is described. Integrated circuits using this phase-change material as memory elements in a memory array can pass the solder bonding criteria mentioned above, while exhibiting good set speeds and demonstrating good 10 year data retention characteristics. A memory cell described herein comprises a first electrode and a second electrode; and a memory element in electrical series between the first and second electrode. The memory element comprises a GexSbyTez phase change material with a silicon oxide additive, including a combination of elements having Ge in a range of 28 to 36 at %, Sb in a range of 10 to 20 at %, Te in a range of 25 to 40 at %, Si in a range of 5 to 10 at %, and O in a range of 12 to 23 at %.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: June 14, 2022
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Huai-Yu Cheng, Hsiang-Lan Lung
  • Patent number: 11309432
    Abstract: There are provided a nanometer semiconductor device with a high-quality epitaxial layer and a method of manufacturing the same. According to an embodiment, the semiconductor device may include: a substrate; at least one nanowire spaced apart from the substrate; at least one semiconductor layer, each formed around a periphery of respective one of the at least one nanowire to at least partially surround the corresponding nanowire, wherein the semiconductor layer(s) formed around the respective nanowire(s) are separated from each other; an isolation layer formed on the substrate, exposing the at least one semiconductor layer; and a gate stack formed on the isolation layer and intersecting the at least one semiconductor layer, wherein the gate stack includes a gate dielectric layer at least partially surrounding a periphery of respective one of the at least one semiconductor layer and a gate conductor layer.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 19, 2022
    Assignee: Institute of Microelectronics, Chinese /Academy of Sciences
    Inventor: Huilong Zhu
  • Patent number: 11302585
    Abstract: In a method of manufacturing a semiconductor device, first to third active fins are formed on a substrate. Each of the first to third active fins extends in a first direction, and the second active fin, the first active fin, and the third active fin are disposed in this order in a second direction crossing the first direction. The second active fin is removed using a first etching mask covering the first and third active fins. The third active fin is removed using a second etching mask covering the first active fin and a portion of the substrate from which the second active fin is removed. A first gate structure is formed on the first active fin. A first source/drain layer is formed on a portion of the first active fin adjacent the first gate structure.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: April 12, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Min-Chul Sun, Myeong-Cheol Kim, Kyoung-Sub Shin
  • Patent number: 11264239
    Abstract: Techniques that can assist with fabricating a semiconductor package that includes a zero misalignment-via (ZMV) and/or a trace formed using a polarization process are described. The disclosed techniques can result in creation of ZMVs and/or traces between the ZMVs using a process comprising application of polarized light to one or more resist layers (e.g., a photoresist layer, etc.). One embodiment of a technique includes modulating an intensity of light applied to one or more resist layers by interaction of a light source with a photomask and at least one polarizer such that one or more patterns are created on the one or more resist layers. One embodiment of another technique includes creating patterns on one or more resist layers with different types of polarized light formed from a photomask and at least one polarizer. The disclosed techniques can assist with reducing manufacturing costs, reducing development time, and increasing I/O density.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: March 1, 2022
    Assignee: Intel Corporation
    Inventors: Hiroki Tanaka, Aleksandar Aleksov, Sri Ranga Sai Boyapati, Robert A. May, Kristof Darmawikarta
  • Patent number: 11239119
    Abstract: A method of forming a vertical channel semiconductor structure, comprises forming a source/drain layer in contact with at least one semiconductor fin. A first sacrificial layer is formed over the source/drain layer. A second sacrificial layer is formed over the first sacrificial layer. A trench is formed in the second sacrificial layer to expose a portion of the first sacrificial layer. After forming the second sacrificial layer, the first sacrificial layer is selectively removed to form a cavity under the second sacrificial layer. A spacer layer is then formed within the cavity.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: February 1, 2022
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Heng Wu, Jay Strane, Hemanth Jagannathan, Lan Yu, Tao Li
  • Patent number: 11239375
    Abstract: A method for manufacturing a pressure sensitive transistor includes forming a channel region between first and second contact regions in a semiconductor substrate, forming a first isolation layer on a surface of the semiconductor substrate, forming a sacrificial structure on the first isolation layer and above the channel region, forming a semiconductor layer on the sacrificial structure and on the first isolation layer, wherein the semiconductor layer covers the sacrificial structure, removing the sacrificial structure for providing a cavity between the substrate and the semiconductor layer, wherein the semiconductor layer forms a membrane structure and forms a control electrode of the pressure sensitive transistor, forming a second isolation layer on the membrane structure and on the exposed portion of the surface of the semiconductor substrate, and forming contacting structures for the first contact region, the second contact region and the membrane structure of the pressure sensitive transistor.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: February 1, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Vladislav Komenko, Heiko Froehlich, Thoralf Kautzsch, Andrey Kravchenko, Bernhard Winkler
  • Patent number: 11222926
    Abstract: Disclosed are a light emitting display device and a method for manufacturing the same. The light emitting display device changes a configuration of common layers disposed in edge areas and can thus satisfy structural characteristics of a narrow bezel and prevent light leakage generated around the edge areas.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: January 11, 2022
    Assignee: LG DISPLAY CO., LTD.
    Inventors: Dong-Hyeok Lim, Min-Chul Jun
  • Patent number: 11217682
    Abstract: Provided is a stable manufacturing method for a semiconductor device. In the manufacturing method for a semiconductor device, first, fins with an equal width are formed in each of a memory cell portion and a logic portion of a semiconductor substrate. Then, the fins in the logic portion are etched with the fins in the memory cell covered with a mask film, thereby fabricating fins in the logic portion, each of which is narrower than the fin formed in the memory cell portion.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: January 4, 2022
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Masaaki Shinohara
  • Patent number: 11201247
    Abstract: The present disclosure provides an LTPS type TFT and a method for manufacturing the same. The TFT includes a first contact hole and a second contact hole, where the first contact hole and the second contact hole pass through the third insulating layer, the second insulating layer, and a portion of the first insulating layer, such that a portion of the heavily doped area is exposed. In addition, a transparent electrode is electrically connected to the source/drain electrode or the second gate electrode and a portion of the heavily doped area.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: December 14, 2021
    Assignee: Wuhan China Star Optoelectronics Technology Co., Ltd.
    Inventors: Juncheng Xiao, Chao Tian
  • Patent number: 11177302
    Abstract: A semiconductor device includes a device layer, a semiconductor layer, a sensor element, a dielectric layer, a color filter layer, and a micro-lens. The semiconductor layer is over the device layer. The semiconductor layer has a plurality of microstructures thereon. Each of the microstructures has a substantially triangular cross-section. The sensor element is under the microstructures of the semiconductor layer and is configured to sense incident light. The dielectric layer is over the microstructures of the semiconductor layer. The color filter layer is over the dielectric layer. The micro-lens is over the color filter layer.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: November 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Nan Tu, Yu-Lung Yeh, Hsing-Chih Lin, Chien-Chang Huang, Shih-Shiung Chen
  • Patent number: 11171162
    Abstract: A display device may include a substrate; a plurality of signal lines on the substrate; a plurality of scan lines on the substrate, the scan lines crossing the signal lines; and a plurality of thin film transistors at crossing positions of the scan lines and the signal lines. The scan lines include some first scan lines and some second scan lines. Each of the second scan lines has an end connected to a load element.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: November 9, 2021
    Assignee: Japan Display Inc.
    Inventors: Daichi Hosokawa, Naoki Miyanaga, Masakatsu Kitani