Patents Examined by Dao H. Nguyen
  • Patent number: 11600564
    Abstract: A method is provided and includes forming a first conductive pattern; forming a photosensitive layer on the first conductive pattern, the photosensitive layer having a first through hole exposing a portion of the first conductive pattern; forming a first via in the first through hole; removing the photosensitive layer; forming a dielectric layer encapsulating the first conductive pattern and the first via, the dielectric layer exposing a top surface of the first via; forming a second conductive pattern on the top surface of the first via, forming a dielectric layer covering the second conductive pattern; etching the dielectric layer to form a second through hole that exposes a portion of the second conductive pattern; forming a second via filling the second through hole and an under bump pad on the second via; and mounting a semiconductor chip on the under bump pad using a connection terminal.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: March 7, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jongyoun Kim, Seokhyun Lee, Minjun Bae
  • Patent number: 11594615
    Abstract: A semiconductor device and a method of manufacturing the same are disclosed. The semiconductor device includes semiconductor wires disposed over a substrate, a source/drain epitaxial layer in contact with the semiconductor wires, a gate dielectric layer disposed on and wrapping around each channel region of the semiconductor wires, a gate electrode layer disposed on the gate dielectric layer and wrapping around the each channel region, and dielectric spacers disposed in recesses formed toward the source/drain epitaxial layer.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: February 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Yu-Lin Yang, Wei-Sheng Yun, Chen-Feng Hsu, Tzu-Chiang Chen
  • Patent number: 11594452
    Abstract: Embodiments of the present disclosure describe techniques for revealing a backside of an integrated circuit (IC) device, and associated configurations. The IC device may include a plurality of fins formed on a semiconductor substrate (e.g., silicon substrate), and an isolation oxide may be disposed between the fins along the backside of the IC device. A portion of the semiconductor substrate may be removed to leave a remaining portion. The remaining portion may be removed by chemical mechanical planarization (CMP) using a selective slurry to reveal the backside of the IC device. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: February 28, 2023
    Assignee: Intel Corporation
    Inventors: Il-Seok Son, Colin T. Carver, Paul B. Fischer, Patrick Morrow, Kimin Jun
  • Patent number: 11587894
    Abstract: Provided is packages and methods of fabricating a package and. The method includes bonding a first device die with a second device die. The second device die is over the first device die. A bonding structure is formed in a combined structure including the first and the second device dies. A component is formed in the bonding structure. The component includes a passive device or a transmission line. The method further includes forming a first and a second electrical connectors electrically coupling to a first end and a second end of the component.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: February 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Fa Chen, Chao-Wen Shih, Tzuan-Horng Liu, Jen-Li Hu
  • Patent number: 11581421
    Abstract: A semiconductor device and a method of manufacturing the same are disclosed. The semiconductor device includes semiconductor wires disposed over a substrate, a source/drain epitaxial layer in contact with the semiconductor wires, a gate dielectric layer disposed on and wrapping around each channel region of the semiconductor wires, a gate electrode layer disposed on the gate dielectric layer and wrapping around the each channel region, and dielectric spacers disposed in recesses formed toward the source/drain epitaxial layer.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: February 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chao-Ching Cheng, Yu-Lin Yang, Wei-Sheng Yun, Chen-Feng Hsu, Tzu-Chiang Chen
  • Patent number: 11581352
    Abstract: Some aspects of the present disclosure relate to a method. In the method, a semiconductor substrate is received. A photodetector is formed in the semiconductor substrate. An interconnect structure is formed over the photodetector and over a frontside of the semiconductor substrate. A backside of the semiconductor substrate is thinned, the backside being furthest from the interconnect structure. A ring-shaped structure is formed so as to extend into the thinned backside of the semiconductor substrate to laterally surround the photodetector. A series of trench structures are formed to extend into the thinned backside of the semiconductor substrate. The series of trench structures are laterally surrounded by the ring-shaped structure and extend into the photodetector.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: February 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee
  • Patent number: 11574878
    Abstract: A semiconductor structure includes a first substrate; a second substrate, disposed over the first substrate; a die, disposed over the second substrate; a via, extending through the second substrate and electrically connecting to the die; a redistribution layer (RDL) disposed between the first substrate and the second substrate, including a dielectric layer, a first conductive structure electrically connecting to the via, and a second conductive structure laterally surrounding the first conductive structure; and an underfill material, partially surrounding the RDL, wherein one end of the second conductive structure exposed through the dielectric layer is entirely in contact with the underfill material.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: February 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tzuan-Horng Liu, Hsien-Wei Chen, Ming-Fa Chen
  • Patent number: 11569350
    Abstract: Disclosed is a semiconductor device including a first active pattern that extends in a first direction on an active region of a substrate, a first source/drain pattern in a recess on an upper portion of the first active pattern, a gate electrode that runs across a first channel pattern on the upper portion of the first active pattern and extends in a second direction intersecting the first direction, and an active contact electrically connected to the first source/drain pattern.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: January 31, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sanggil Lee, Namkyu Cho, Seokhoon Kim, Kang Hun Moon, Hyun-Kwan Yu, Sihyung Lee
  • Patent number: 11569563
    Abstract: A semiconductor package includes a redistribution wiring layer having redistribution wirings, a semiconductor chip on the redistribution wiring layer, a frame on the redistribution wiring layer, the frame surrounding the semiconductor chip, and the frame having core connection wirings electrically connected to the redistribution wirings, and an antenna structure on the frame, the antenna structure including a ground pattern layer, a first antenna insulation layer, a radiator pattern layer, a second antenna insulation layer, and a director pattern layer sequentially stacked on one another.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: January 31, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yongkoon Lee, Jingu Kim, Sangkyu Lee
  • Patent number: 11569562
    Abstract: A semiconductor package and a manufacturing method thereof are provided. The semiconductor package includes: patch antennas, encapsulated by a first encapsulant; a device die, vertically spaced apart from the patch antennas, and electrically coupled to the patch antennas; and at least one redistribution structure, disposed between the patch antennas and the device die, and including electromagnetic bandgap (EBG) structures laterally surrounding each of the patch antennas.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: January 31, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Ping Wang, Chun-Lin Lu, Han-Ping Pu, Kai-Chiang Wu, Chung-Yi Hsu
  • Patent number: 11569120
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. Bridge material is formed across the trenches laterally-between and longitudinally-along immediately-laterally-adjacent of the memory-block regions. The bridge material comprises longitudinally-alternating first and second regions. The first regions of the bridge material are ion implanted differently than the second regions of the bridge material to change relative etch rate of one of the first or second regions relative to the other in an etching process.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: January 31, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Daniel Billingsley, Jordan D. Greenlee, Yongjun Jeff Hu
  • Patent number: 11557540
    Abstract: A semiconductor device having a substrate, a semiconductor chip, and a plurality of electrode terminals is provided. The substrate has first and second principal surfaces. The semiconductor chip is disposed on the first principal surface. The electrode terminals are disposed on the second principal surface. The substrate has a via interconnection near a position at which an outer edge line of the semiconductor chip intersects an outer outline of the electrode terminal farthest from a center of the substrate, the electrode terminal farthest from the center of the substrate being among the plurality of electrode terminals overlapping the outer edge line in a predetermined condition as seen through the substrate of the semiconductor device from a direction perpendicular to the first principal surface, the via interconnection connecting a first interconnection layer on a first principal surface-side to a second interconnection layer on a second principal surface-side.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: January 17, 2023
    Assignee: KIOXIA CORPORATION
    Inventor: Hitoshi Ishii
  • Patent number: 11532651
    Abstract: The present disclosure relates to an image pickup device and an electronic apparatus that enable warping of a substrate to be suppressed. A first structural body including a pixel array unit is layered with second structural body including an input/output circuit unit and outputting a pixel signal output from the pixel to the outside of the device, and a signal processing circuit; and a signal output external terminal and a signal input external terminal are arranged below the pixel array unit, the signal output external terminal being connected to the outside via a first through-via penetrating through a semiconductor substrate in the second structural body, the signal input external terminal being connected to the outside via a second through-via connected to an input circuit unit and penetrating through the semiconductor substrate.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: December 20, 2022
    Assignee: SONY GROUP CORPORATION
    Inventors: Hiroaki Ishiwata, Harumi Tanaka, Atsuhiro Ando
  • Patent number: 11527609
    Abstract: In some embodiments, the present disclosure relates to an integrated chip including a first transistor and a second transistor arranged over a substrate. The first transistor includes first and second source/drain regions over the substrate and includes a first channel structure directly between the first and second source/drain regions. A first gate electrode is arranged over the first channel structure and is between first and second air spacer structures. The second transistor includes third and fourth source/drain regions over the substrate and includes a second channel structure directly between the third and fourth source/drain regions. A second gate electrode is arranged over the second channel structure and is between third and fourth air spacer structures. The integrated chip further includes a high-k dielectric spacer structure over a low-k dielectric fin structure between the first and second channel structures to separate the first and second gate electrodes.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: December 13, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Huan-Chieh Su, Chia-Hao Chang, Cheng-Chi Chuang, Chih-Hao Wang, Yu-Ming Lin
  • Patent number: 11508768
    Abstract: The present technology relates to a solid-state imaging device and an electronic apparatus capable of improving sensitivity while suppressing deterioration of color mixing. The solid-state imaging device includes a substrate, a first photoelectric conversion region in the substrate, a second photoelectric conversion region in the substrate, a trench between the first photoelectric conversion region and the second photoelectric conversion region and penetrates through the substrate, a first concave portion region that has a plurality of concave portions provided on a light receiving surface side of the substrate, above the first photoelectric conversion regions, and a second concave portion region that has a plurality of concave portions provided on the light receiving surface side of the substrate, above the second photoelectric conversion region. The technology of the present disclosure can be applied to, for example, a backside illumination solid-state imaging device and the like.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: November 22, 2022
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Itaru Oshiyama
  • Patent number: 11508738
    Abstract: An N-type metal oxide semiconductor (NMOS) transistor includes a first gate and a first spacer structure disposed on a first sidewall of the first gate in a first direction. The first spacer structure has a first thickness in the first direction and measured from an outermost point of an outer surface of the first spacer structure to the first sidewall. A P-type metal oxide semiconductor (PMOS) transistor includes a second gate and a second spacer structure disposed on a second sidewall of the second gate in the first direction and measured from an outermost point of an outer surface of the second spacer structure to the second sidewall. The second spacer structure has a second thickness that is greater than the first thickness. The NMOS transistor is a pass-gate of a static random access memory (SRAM) cell, and the PMOS transistor is a pull-up of the SRAM cell.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: November 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Hao Lin, Chih-Chuan Yang, Hsin-Wen Su, Kian-Long Lim, Chien-Chih Lin
  • Patent number: 11508655
    Abstract: A semiconductor package structure includes a semiconductor die and at least one pillar structure. The semiconductor die has an upper surface and includes at least one conductive pad disposed adjacent to the upper surface. The pillar structure is electrically connected to the conductive pad of the semiconductor die, and defines a recess portion recessed from a side surface of the pillar structure. A conductivity of the pillar structure is greater than a conductivity of the conductive pad.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: November 22, 2022
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Yung-Shun Chang, Meng-Wei Hsieh, Teck-Chong Lee
  • Patent number: 11508736
    Abstract: A semiconductor device according to the present disclosure includes a gate-all-around (GAA) transistor in a first device area and a fin-type field effect transistor (FinFET) in a second device area. The GAA transistor includes a plurality of vertically stacked channel members and a first gate structure over and around the plurality of vertically stacked channel members. The FinFET includes a fin-shaped channel member and a second gate structure over the fin-shaped channel member. The fin-shaped channel member includes semiconductor layers interleaved by sacrificial layers.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Feng-Ching Chu, Wei-Yang Lee, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 11502122
    Abstract: The present technology relates to an imaging element and an electronic device enabling suppression of generation of noise. Provided with a substrate, a first photoelectric conversion region provided on the substrate, a second photoelectric conversion region provided on the substrate and adjacent to the first photoelectric conversion region, a trench provided on the substrate and between the first photoelectric conversion region and the second photoelectric conversion region, a first impurity region including a first impurity provided on the substrate and on a sidewall of the trench, and a second impurity region including a second impurity provided on the substrate and between the first photoelectric conversion region or the second photoelectric conversion region and the first impurity region. The present technology can be applied to an imaging element.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: November 15, 2022
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Haruyuki Nakagawa
  • Patent number: 11502109
    Abstract: A highly flexible display device and a method for manufacturing the display device are provided. A transistor including a light-transmitting semiconductor film, a capacitor including a first electrode, a second electrode, and a dielectric film between the first electrode and the second electrode, and a first insulating film covering the semiconductor film are formed over a flexible substrate. The capacitor includes a region where the first electrode and the dielectric film are in contact with each other, and the first insulating film does not cover the region.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: November 15, 2022
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki