Patents Examined by Hung K. Vu
  • Patent number: 11569217
    Abstract: An image sensor package and a manufacturing method thereof are provided. The image sensor package includes a redistribution circuit structure; an image sensing chip disposed on the redistribution circuit structure and having a sensing surface, on which a sensing area and a first conductive pillar arranged in the periphery of the sensing area are disposed; a lid covering the sensing area; an encapsulant disposed on the redistribution circuit structure and encapsulating at least part of the image sensing chip and the cover; and a top tier semiconductor chip disposed above the image sensing chip and having an active surface on which a first conductor is disposed. The first conductor overlaps the image sensing chip in a direction perpendicular to the sensing surface. The first conductive pillar and the first conductor are aligned and bonded to each other to electrically connect the image sensing chip and the top tier semiconductor chip.
    Type: Grant
    Filed: January 5, 2022
    Date of Patent: January 31, 2023
    Assignee: Industrial Technology Research Institute
    Inventors: Sheng-Tsai Wu, Yu-Min Lin, Yuan-Yin Lo, Ang-Ying Lin, Tzu-Hsuan Ni, Chao-Jung Chen, Shin-Yi Huang
  • Patent number: 11563201
    Abstract: A display substrate and a method for manufacturing the same are provided. The display substrate includes a base substrate and a display element provided on the base substrate. The method includes steps of forming a first protection layer at at least one of outer peripheral sides of the base substrate, and removing the first protection layer before attaching a cover plate to the base substrate on which the display element is provided.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: January 24, 2023
    Assignees: CHENGDU BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Ge Wang, Zhiliang Jiang
  • Patent number: 11557576
    Abstract: The present application discloses a method for fabricating a semiconductor device. The semiconductor device includes an active interposer including a programmable unit, a first memory die positioned above the active interposer and including a storage unit, and a first logic die positioned below the active interposer. The active interposer, the first memory die, and the first logic die are electrically coupled. method includes providing an active interposer comprising a programmable unit; providing a first logic die and bonding a first side of the active interposer onto the first logic die; providing a first memory die comprising a storage unit; and bonding the first memory die onto a second side of the active interposer, wherein the second side of the active interposer is parallel to the first side of the active interposer.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: January 17, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Ping Hsu
  • Patent number: 11557569
    Abstract: A method of forming a microelectronic device comprises forming a microelectronic device structure comprising a base structure, a doped semiconductive structure comprising a first portion overlying the base structure and second portions vertically extending from the first portion and into the base structure, a stack structure overlying the doped semiconductive structure, cell pillar structures vertically extending through the stack structure and to the doped semiconductive structure, and digit line structures vertically overlying the stack structure. An additional microelectronic device structure comprising control logic devices is formed. The microelectronic device structure is attached to the additional microelectronic device structure to form a microelectronic device structure assembly. The carrier structure and the second portions of the doped semiconductive structure are removed.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: January 17, 2023
    Assignee: Micron Technology, Inc.
    Inventor: Kunal R. Parekh
  • Patent number: 11545422
    Abstract: A fan-out semiconductor package includes: a support wiring structure including a support wiring conductive structure, a plurality of support wiring insulating layers including a first support wiring insulating layer having a recess area and a second support wiring insulating layer on the first support wiring insulating layer and enveloping the support wiring conductive structure, a pad layer enveloped by the second support wiring insulating layer and connected to the support wiring conductive structure, and an under-bump metallurgy (UBM) layer enveloped by the first support wiring insulating layer and connected to the pad layer; and a semiconductor chip on the support wiring structure, wherein the UBM layer includes a body portion and a protrusion protruding from the body portion and arranged in the recess area.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: January 3, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Yonghwan Kwon
  • Patent number: 11545547
    Abstract: A semiconductor device and a method of forming the same, the semiconductor device includes a substrate, a gate structure, a first dielectric layer, a second dielectric layer, a first plug and two metal lines. The substrate has a shallow trench isolation and an active area, and the gate structure is disposed on the substrate to cover a boundary between the active area and the shallow trench isolation. The first dielectric layer is disposed on the substrate, to cover the gate structure, and the first plug is disposed in the first dielectric layer to directly in contact with a conductive layer of the gate structure and the active area. The second dielectric layer is disposed on the first dielectric layer, with the first plug and the gate being entirely covered by the first dielectric layer and the second dielectric layer. The two metal lines are disposed in the second dielectric layer.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: January 3, 2023
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Feng-Yi Chang, Fu-Che Lee, Yi-Ching Chang, Kai-Lou Huang, Ying-Chih Lin, Gang-Yi Lin
  • Patent number: 11527503
    Abstract: The present disclosure relates to a method for manufacturing a semiconductor package including vacuum-laminating a non-conductive film on a substrate on which a plurality of through silicon vias are provided and bump electrodes are formed, and then performing UV irradiation, wherein an increase in melt viscosity before and after UV irradiation can be adjusted to 30% or less, whereby a bonding can be performed without voids during thermo-compression bonding, and resin-insertion phenomenon between solders can be prevented, fillets can be minimized and reliability can be improved.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: December 13, 2022
    Assignee: LG CHEM, LTD.
    Inventors: You Jin Kyung, Minsu Jeong, Kwang Joo Lee
  • Patent number: 11508649
    Abstract: A semiconductor package may include a substrate and a semiconductor chip on the substrate. The substrate may include an inner insulating layer, a redistribution layer in the inner insulating layer, an outer insulating layer on the inner insulating layer, a connection pad provided in the outer insulating layer and electrically connected to the redistribution layer, and a ground electrode in the outer insulating layer. A top surface of the connection pad may be exposed by a top surface of the outer insulating layer, and a level of the top surface of the connection pad may be lower than a level of the top surface of the outer insulating layer. A level of a bottom surface of the ground electrode may be higher than a level of a top surface of the redistribution layer, and the outer insulating layer covers a top surface of the ground electrode.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: November 22, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eungkyu Kim, Jongyoun Kim, Gwangjae Jeon
  • Patent number: 11508857
    Abstract: A pyramid structure to mitigate optical probing attacks in ICs by scrambling the measurements reflected by a laser pulse is disclosed. The pyramid structure is applied to selected areas at the bottom surface of the metal traces in metal layer to circumvent the extra silicon layer and thus minimize the changes to the conventional device structures. The pyramid structure includes randomized pyramids at nanometer scale. Optical simulation results show the pyramidized metal surface is able to prevent optical probing attacks. The fabrication of pyramids is CMOS compatible as well. Optical simulations are performed to analyze the impact these nano-scaled pyramids in a laser voltage probing attacking model. The nanopyramid can disturb the optical measurements enough to make the attacks practically infeasible. In addition, the nanopyramid structure countermeasure works in a passive mode without consuming any energy.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: November 22, 2022
    Assignee: University of Florida Research Foundation, Incorporated
    Inventors: Haoting Shen, Navid Asadizanjani, Domenic J. Forte, Mark M. Tehranipoor
  • Patent number: 11502056
    Abstract: A semiconductor package and a manufacturing method thereof are provided. The semiconductor package includes first and second package components stacked upon and electrically connected to each other. The first package component includes first and second conductive bumps, the second package component includes third and fourth conductive bumps, and dimensions of the first and second conductive bumps are less than those of the third and fourth conductive bumps. The semiconductor package includes a first joint structure partially wrapping the first conductive bump and the third conductive bump, and a second joint structure partially wrapping the second conductive bump and the fourth conductive bump. A curvature of the first joint structure is different from a curvature of the second joint structure.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: November 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuan-Yu Huang, Chih-Wei Wu, Sung-Hui Huang, Shang-Yun Hou, Ying-Ching Shih, Cheng-Chieh Li
  • Patent number: 11495574
    Abstract: Disclosed is a semiconductor package comprising a first semiconductor chip, a second semiconductor chip on a first surface of the first semiconductor chip, and a plurality of conductive pillars on the first surface of the first semiconductor chip and adjacent to at least one side of the second semiconductor chip. The first semiconductor chip includes a first circuit layer adjacent to the first surface of the first semiconductor chip. The second semiconductor chip and the plurality of conductive pillars are connected to the first surface of the first semiconductor chip.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: November 8, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Yun Seok Choi
  • Patent number: 11488898
    Abstract: A structure includes a first package component including a first conductive pad, and a second package component overlying the first package component. The second package component includes a surface dielectric layer, and a conductive bump protruding lower than the surface dielectric layer. The first conductive bump includes a first sidewall facing away from a center of the first package component, and a second sidewall facing toward the center. A solder bump joins the first conductive pad to the first conductive bump. The solder bump contacts the first sidewall. An underfill is between the first package component and the second package component, and the underfill contacts the second sidewall.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: November 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Yao Lin, Shin-Puu Jeng
  • Patent number: 11482509
    Abstract: Disclosed is a semiconductor package comprising a first memory chip including a first semiconductor substrate and a first through structure that penetrates the first semiconductor substrate, a second memory chip that directly contacts a top surface of the first memory chip and includes a second semiconductor substrate and a second through structure that penetrates the second semiconductor substrate, a first dummy chip that directly contacts a top surface of the second memory chip and includes a first conductive via, a second dummy chip that directly contacts a top surface of the first dummy chip and includes a second conductive via, and a logic chip in direct contact with a top surface of the second dummy chip. The logic chip is electrically connected to the first through structure through the second conductive via, the first conductive via, and the second through structure.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: October 25, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Se-Ho You, Kyung Suk Oh, Sunkyoung Seo
  • Patent number: 11482449
    Abstract: An electrical component and method for manufacturing the electrical component with a substrate a conductor stack having multiple layers and including at least one electrically conductive path. The conductor stack mounted to the substrate with a dielectric passivation stack encasing at least a portion of the conductor stack.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: October 25, 2022
    Assignee: General Electric Company
    Inventors: Cheng-Po Chen, Reza Ghandi, David Richard Esler, David Mulford Shaddock, Emad Andarawis Andarawis, Liang Yin
  • Patent number: 11476156
    Abstract: In one exemplary aspect, a method for semiconductor manufacturing comprises forming first and second silicon nitride features on sidewall surfaces of a contact hole, where the contact hole is disposed in a dielectric layer and above a source/drain (S/D) feature. The method further comprises forming a contact plug in the contact hole, the contact plug being electrically coupled to the S/D feature, removing a top portion of the contact plug to create a recess in the contact hole, forming a hard mask layer in the recess, and removing the first and second silicon nitride features via selective etching to form first and second air gaps, respectively.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: October 18, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Che Chiang, Ju-Li Huang, Chun-Sheng Liang, Jeng-Ya Yeh
  • Patent number: 11472157
    Abstract: A bionic flexible actuator with a real-time feedback function and a preparation method thereof. The method includes: preparing stimuli-response layer and bionic flexible strain-sensor film layer, arranging bionic V-shaped groove array structure on bionic flexible strain-sensor film layer, and sticking bionic flexible strain-sensor film layer onto stimuli-response layer through adhesive layer; stimuli-response layer is prepared by adopting following steps: mixing multi-walled carbon nanotubes and polyvinylidene fluoride after being dissolved in a solvent respectively and obtaining a mixed solution; performing a film formation process to mixed solution and embedding a first electrode to obtain stimuli-response layer.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: October 18, 2022
    Assignee: JILIN UNIVERSITY
    Inventors: Zhiwu Han, Linpeng Liu, Junqiu Zhang, Dakai Wang, Tao Sun, Kejun Wang, Shichao Niu, Tao Hou
  • Patent number: 11469198
    Abstract: A semiconductor device manufacturing method including: simultaneously forming a plurality of conductive bumps respectively on a plurality of formation sites by adjusting a forming factor in accordance with an environmental density associated with each formation site; wherein the plurality of conductive bumps including an inter-bump height uniformity smaller than a value, and the environmental density is determined by a number of neighboring formation sites around each formation site in a predetermined range.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: October 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ming-Ho Tsai, Jyun-Hong Chen, Chun-Chen Liu, Yu-Nu Hsu, Peng-Ren Chen, Wen-Hao Cheng, Chi-Ming Tsai
  • Patent number: 11469193
    Abstract: An antenna module includes a connection member including at least one wiring layer and at least one insulating layer, an antenna package including a plurality of antenna members transmitting or receiving a radio frequency (RF) signal and a plurality of feed vias respectively electrically connected to the plurality of antenna members at one end and respectively electrically connected to a wiring corresponding to the at least one wiring layer at the other end, and positioned on a first surface of the connection member, an integrated circuit (IC) disposed on a second surface of the connection member and electrically connected to the wiring corresponding to the at least one wiring layer to receive an intermediate frequency (IF) signal or baseband signal and transfer an RF signal or receive an RF signal and transfer an IF signal or baseband signal, and a filter filtering an IF signal or a baseband signal.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: October 11, 2022
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Doo Il Kim, Dae Kwon Jung, Young Sik Hur, Yong Ho Baek
  • Patent number: 11462519
    Abstract: The present application discloses a semiconductor device and a method for fabricating the semiconductor device. The semiconductor device includes an active interposer including a programmable unit, a first memory die positioned above the active interposer and including a storage unit, and a first logic die positioned below the active interposer. The active interposer, the first memory die, and the first logic die are electrically coupled.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: October 4, 2022
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Ping Hsu
  • Patent number: 11450636
    Abstract: A semiconductor device includes a first pad defined on one surface of a first chip; a second pad defined on one surface of a second chip which is stacked on the first chip, and bonded to the first pad; a first resistor element defined in the first chip, and coupled to the first pad; and a second resistor element defined in the second chip, and coupled to the second pad.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: September 20, 2022
    Assignee: SK hynix Inc.
    Inventor: Chan Ho Yoon