Patents Examined by Jack Chen
  • Patent number: 10026908
    Abstract: The present application provides a hetero-cyclic compound which may significantly improve a service life, efficiency, electrochemical stability, and thermal stability of an organic light emitting device, and an organic light emitting device in which the hetero-cyclic compound is contained in an organic compound layer.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: July 17, 2018
    Assignee: HEESUNG MATERIAL LTD.
    Inventors: Geon-Yu Park, Jae-Yeol Ma, Dong-Jun Kim, Jin-Seok Choi, Dae-Hyuk Choi, Joo-Dong Lee
  • Patent number: 10026643
    Abstract: Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
    Type: Grant
    Filed: August 27, 2017
    Date of Patent: July 17, 2018
    Assignee: Micron Technology, Inc.
    Inventor: David H. Wells
  • Patent number: 10020397
    Abstract: A device including a gate stack over a semiconductor substrate having a pair of spacers abutting sidewalls of the gate stack. A recess is formed in the semiconductor substrate adjacent the gate stack. The recess has a first profile having substantially vertical sidewalls and a second profile contiguous with and below the first profile. The first and second profiles provide a bottle-neck shaped profile of the recess in the semiconductor substrate, the second profile having a greater width within the semiconductor substrate than the first profile. The recess is filled with a semiconductor material. A pair of spacers are disposed overly the semiconductor substrate adjacent the recess.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: July 10, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Eric Peng, Chao-Cheng Chen, Chii-Horng Li, Ming-Hua Yu, Shih-Hao Lo, Syun-Ming Jang, Tze-Liang Lee, Ying Hao Hsieh
  • Patent number: 10014211
    Abstract: Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: July 3, 2018
    Assignee: Micron Technology, Inc.
    Inventor: David H. Wells
  • Patent number: 9997398
    Abstract: Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: June 12, 2018
    Assignee: Micron Technology, Inc.
    Inventor: David H. Wells
  • Patent number: 9997543
    Abstract: There has been a case where peeling occurs if an internal stress of a wiring of a TFT is strong. In particular, the internal stress of a gate electrode largely influences a stress that a semiconductor film receives, and there has been a case where the internal stress becomes a cause of reduction in electric characteristics of a TFT depending on the internal stress. According to the present invention, an impurity element is introduced into a wiring, or both the introduction of an impurity element and heat treatment are performed, whereby the wiring can be controlled to have a desired internal stress. It is effective that the present invention is particularly applied to a gate electrode. Further, it is possible that the introduction of an impurity element and the heat treatment are conducted to only a desired region to conduct control to attain a desired internal stress.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: June 12, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Tatsuya Arao
  • Patent number: 9991320
    Abstract: There is provided an organic light emitting diode display device. The organic light emitting diode display device includes a substrate divided into an emission area and a non-emission area, an overcoating layer disposed on the substrate and including a plurality of micro lenses, a plurality of first electrode patterns disposed on the overcoating layer and spaced away from each other in the emission area, an organic emission layer disposed on the plurality of first electrodes, and a second electrode disposed on the organic emission layer.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: June 5, 2018
    Assignee: LG DISPLAY CO., LTD.
    Inventors: SeungRyong Joung, ChangWook Han, KangJu Lee, Hongseok Choi, Hansun Park, SoYeon Ahn, Seongsu Jeon, Wonhoe Koo, JeaHo Park
  • Patent number: 9984892
    Abstract: Disclosed is a method for removing, from a target substrate having an insulating film with a predetermined pattern formed thereon, a silicon-containing oxide film formed in a silicon portion at a bottom of the pattern. The method includes: forming a carbon-based protective film on the entire surface of the insulating film including the pattern by ALD using a carbon source gas; selectively removing the carbon-based protective film on an upper surface of the insulating film and on the bottom of the pattern by an anisotropic plasma processing; removing the silicon-containing oxide film formed on the bottom of the pattern by etching; and removing a remaining portion of the carbon-based protective film.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: May 29, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Takashi Kobayashi, Seishi Murakami, Takashi Sakuma, Masahiko Tomita, Takamichi Kikuchi, Akitaka Shimizu, Takayuki Kamaishi, Einosuke Tsuda
  • Patent number: 9985043
    Abstract: An improvement is achieved in the reliability of a semiconductor device. In a memory cell region, a plurality of fins are provided which are portions of a semiconductor substrate extending in an x-direction along a main surface of the semiconductor substrate and spaced apart from each other in a y-direction orthogonal to the x-direction along the main surface of the semiconductor substrate. Between the fins adjacent to each other in the y-direction, a portion of an upper surface of an isolation region is at a position higher than a surface obtained by connecting a position of the upper surface of the isolation region which is in contact with a side wall of one of the fins to a position of the upper surface of the isolation region which is in contact with a side wall of the other fin. In a cross section along the y-direction, the upper surface of the isolation region has a projecting shape.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: May 29, 2018
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Shibun Tsuda
  • Patent number: 9978990
    Abstract: Disclosed herein are OLED devices comprising waveguides including at least one waveguide layer comprising at least one inorganic nanoparticle and at least one binder and having an RMS surface roughness of less than about 20 nm. Lighting and display devices comprising such OLED devices are further disclosed herein as well as methods for making the waveguides.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: May 22, 2018
    Assignee: Corning Incorporated
    Inventors: Archit Lal, Pamela Arlene Maurey, Daniel Aloysius Nolan, Wageesha Senaratne
  • Patent number: 9972525
    Abstract: A method for preparing a trench isolation structure, which comprises the following steps of: providing a substrate; forming an oxide layer on the substrate; successively generating an oxidation barrier layer and an ethyl orthosilicate layer on the surface of the oxide layer; etching the oxidation barrier layer and the ethyl orthosilicate layer; corroding the substrate to form a trench by using the oxidation barrier layer and the ethyl orthosilicate layer as mask layers; removing the ethyl orthosilicate layer, and oxidizing a side wall of the trench by using the oxidation barrier layer as a barrier layer; filling the trench with a polysilicon and then etching back the polysilicon, and removing the polysilicon on the surface of the oxidation barrier layer; and removing the oxidation barrier layer and the oxide layer on the surface of the substrate.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: May 15, 2018
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Hua Song, Jiao Wang, Huan Yang
  • Patent number: 9972508
    Abstract: The reliability of a semiconductor device is improved. In a manufacturing method of a semiconductor device, when resin enters a ditch formed on a lower surface of a chip mounting portion by a process of forming a sealing body made of the resin, the resin embedded in the ditch is removed by a process of cleaning the lower surface of the chip mounting portion, and a plating film is formed also on an inner wall of the ditch in a process of forming the plating film on the lower surface of the chip mounting portion.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: May 15, 2018
    Assignee: RENESAS ELECTRONIC CORPORATION
    Inventor: Kei Taniguchi
  • Patent number: 9966403
    Abstract: A solid-state imaging apparatus includes: an imaging section having a light-receiving portion for receiving light from an object to image the object; and a substrate on which the imaging section is disposed, wherein a predetermined member provided on the substrate in the neighborhood of the light receiving portion is partially or entirely coated in black.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: May 8, 2018
    Assignee: SONY CORPORATION
    Inventors: Masahiko Shimizu, Toshiaki Iwafuchi
  • Patent number: 9953988
    Abstract: A static random-access memory (SRAM) cell array forming method includes the following steps. A plurality of fin structures are formed on a substrate, wherein the fin structures include a plurality of active fins and a plurality of dummy fins, each PG (pass-gate) FinFET shares at least one of the active fins with a PD (pull-down) FinFET, and at least one dummy fin is disposed between the two active fins having two adjacent pull-up FinFETs thereover in a static random-access memory cell. At least a part of the dummy fins are removed. The present invention also provides a static random-access memory (SRAM) cell array formed by said method.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: April 24, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang
  • Patent number: 9947674
    Abstract: A static random-access memory (SRAM) cell array forming method includes the following steps. A plurality of fin structures are formed on a substrate, wherein the fin structures include a plurality of active fins and a plurality of dummy fins, each PG (pass-gate) FinFET shares at least one of the active fins with a PD (pull-down) FinFET, and at least one dummy fin is disposed between the two active fins having two adjacent pull-up FinFETs thereover in a static random-access memory cell. At least a part of the dummy fins are removed. The present invention also provides a static random-access memory (SRAM) cell array formed by said method.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: April 17, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang
  • Patent number: 9941288
    Abstract: A static random-access memory (SRAM) cell array forming method includes the following steps. A plurality of fin structures are formed on a substrate, wherein the fin structures include a plurality of active fins and a plurality of dummy fins, each PG (pass-gate) FinFET shares at least one of the active fins with a PD (pull-down) FinFET, and at least one dummy fin is disposed between the two active fins having two adjacent pull-up FinFETs thereover in a static random-access memory cell. At least a part of the dummy fins are removed. The present invention also provides a static random-access memory (SRAM) cell array formed by said method.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: April 10, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang
  • Patent number: 9941184
    Abstract: A packaged assembly is disclosed, including thermal interface material dispensed on an organic package and methods of manufacturing. The method includes dispensing a thermal interface material (TIM) on an electronic assembly. The method further includes removing volatile species of the TIM, prior to lid placement on the electronic assembly. The method further includes placing the lid on the TIM, over the electronic assembly. The method further includes pressing the lid onto the electronic assembly.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: April 10, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Isabel De Sousa, Annique Lavoie, Eric Salvas, Michel Turgeon
  • Patent number: 9935154
    Abstract: Resistive memory cell structures and methods are described herein. One or more memory cell structures comprise a first resistive memory cell comprising a first resistance variable material and a second resistive memory cell comprising a second resistance variable material that is different than the first resistance variable material.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: April 3, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Ferdinando Bedeschi
  • Patent number: 9923076
    Abstract: A method to reduce parasitic capacitance in a high-k dielectric metal gate (HKMG) transistor with raised source and drain regions (RSD) is provided including forming a multilayer stack for an HKMG gate on a substrate, the multilayer stack including a gate electrode layer of amorphous silicon or polycrystalline silicon, forming a patterned hard mask above the gate electrode layer, etching partially into the gate electrode layer through the patterned hard mask to define multiple partially etched gate stacks and a partially etching gate electrode layer, forming a conformal protective layer wrapping over the partially etched gate electrode layer and the patterned hard mask, and etching through a remainder of the partially etched gate electrode layer with the conformal protective layer wrapped over the partially etched gate stacks and the patterned hard mask, as well as an HKMG transistor resulting therefrom.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: March 20, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Elliot John Smith
  • Patent number: 9922869
    Abstract: Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
    Type: Grant
    Filed: August 27, 2017
    Date of Patent: March 20, 2018
    Assignee: Micron Technology, Inc.
    Inventor: David H. Wells