Patents Examined by Karen M Kusumakar
  • Patent number: 7923332
    Abstract: A method for producing a semiconductor device, the method includes the steps of: forming a hard mask layer with a mask opening on a semiconductor substrate in which is formed a source region; forming a side wall mask on the side wall of the mask opening; forming a trench by using the side wall mask and the hard mask layer as a mask in such a way that the trench reaches the source region; removing the side wall mask; forming a gate electrode inside the mask opening and the trench, with a gate insulating film interposed thereunder; forming a side wall on the side wall of the gate electrode; and forming a drain region on the surface of the semiconductor substrate which is adjacent to the gate electrode.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: April 12, 2011
    Assignee: Sony Corporation
    Inventor: Shinpei Yamaguchi
  • Patent number: 7919387
    Abstract: The present invention provides a memory device including at least two of a first dielectric on a semiconductor substrate; a floating gates corresponding to each of the at least two gate oxides; a second dielectric on the floating gates; a control gate conductor formed atop the second gate oxide; source and drain regions present in portions of the semiconducting substrate that are adjacent to each portion of the semiconducting substrate that is underlying the at least two of the first gate oxide, wherein the source and drain regions define a length of a channel positioned therebetween; and a low-k dielectric material that is at least present between adjacent floating gates of the floating gates corresponding to each of the at least two gate oxides, wherein the low-k dielectric material is present along a direction perpendicular to the length of the channel positioned therebetween.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: April 5, 2011
    Assignee: International Business Machines Corporation
    Inventor: Huilong Zhu
  • Patent number: 7915068
    Abstract: There is disclosed a method for making solar cells with sensitized quantum dots in the form of nanometer metal crystals. Firstly, a first substrate is provided. Then, a silicon-based film is grown on a side of the first substrate. A pattern mask process is executed to etch areas of the silicon-based film. Nanometer metal particles are provided on areas of the first substrate exposed from the silicon-based film. A metal electrode is attached to an opposite side of the first substrate. A second substrate is provided. A transparent conductive film is grown on the second substrate. A metal catalytic film is grown on the transparent conductive film. The second substrate, the transparent conductive film and the metal catalytic film together form a laminate. The laminate is inverted and provided on the first substrate. Finally, electrolyte is provided between the first substrate and the metal catalytic film.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: March 29, 2011
    Assignee: Atomic Energy Council—Institute of Nuclear Energy Research
    Inventors: Meng-Chu Chen, Shan-Ming Lan, Tsun-Neng Yang, Zhen-Yu Li, Yu-Han Su, Chien-Te Ku, Yu-Hsiang Huang
  • Patent number: 7902006
    Abstract: In manufacturing a thin film transistor array substrate, a passivation film is formed over the transistors. A first photoresist pattern is formed over the passivation film, with a first portion partially overlying at least one source/drain electrode of each transistor and overlying each pixel electrode region, and with a second portion thicker than the first portion. The passivation film is patterned using the first photoresist pattern as a mask. The first photoresist pattern's first portion is removed to form a second photoresist pattern which protrudes upward around the pixel electrode regions. A transparent conductive film is formed with recesses in the pixel electrode regions. A masking pattern is formed over the transparent film in each pixel electrode region, the masking pattern's top surface being below a top of the transparent film. The transparent film is patterned using the masking pattern as a mask to form the pixel electrodes.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: March 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woong-Kwon Kim, Ho-Jun Lee, Hong-Kee Chin, Sang-Heon Song, Jung-Suk Bang, Jun-Ho Song, Byeong-Jae Ahn, Bae-Heuk Yim
  • Patent number: 7893478
    Abstract: This disclosure concerns a semiconductor storage device comprising a semiconductor layer provided on the insulation layer provided on the semiconductor substrate; a source layer and a drain layer provided in the semiconductor layer; a body provided between the source layer and the drain layer, the body being in an electrically floating state; an emitter layer contacting with the source layer, the emitter layer having an opposite conductive type to the source layer; a word line including the source layer, the drain layer, and the body, the word line being provided to memory cells arrayed in a first direction in a plurality of tow-dimensionally arranged memory cells; a source line connected to the source layers of the memory cells arrayed in the first direction; and a bit line connected to the drain layers of the memory cells arrayed in a second direction intersecting the first direction.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: February 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoki Higashi, Takashi Ohsawa, Ryo Fukuda
  • Patent number: 7892963
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing an integrated circuit substrate having a non-active side and an active side; forming a recess in the integrated circuit substrate from the non-active side exposing a first contact and a second contact with the first contact and the second contact along the active side; forming a first via, having a first via extension extended beyond the non-active side and an opening at the non-active side, within the recess; forming a barrier liner within the opening with the barrier liner exposed beyond the non-active side; and forming a second via over the barrier liner and within the opening of the first via with the second via exposed beyond the non-active side.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: February 22, 2011
    Assignee: Globalfoundries Singapore Pte. Ltd.
    Inventors: Alfred Yeo, Kai Chong Chan
  • Patent number: 7879729
    Abstract: In a method of forming micro patterns of a semiconductor device, first etch mask patterns are formed over a semiconductor substrate. An auxiliary film is formed over the semiconductor substrate including a surface of the first etch mask patterns. Second etch mask patterns are formed between the auxiliary films formed on sidewalls of the first etch mask patterns. The first etch mask patterns and the second etch mask patterns are formed using the same material. The auxiliary films between the first and second etch mask patterns are removed. Accordingly, more micro patterns can be formed than allowed by the resolution limit of an exposure apparatus while preventing misalignment.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: February 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Woo Yung Jung
  • Patent number: 7863083
    Abstract: A method for fabricating a CMOS gate electrode by using Re, Rh, Pt, Ir or Ru metal and a CMOS structure that contains such gate electrodes are described. The work functions of these metals make them compatible with current pFET requirements. For instance, the metal can withstand the high hydrogen pressures necessary to produce properly passivated interfaces without undergoing chemical changes. The thermal stability of the metal on dielectric layers such as SiO2, Al2O3 and other suitable dielectric materials makes it compatible with post-processing temperatures up to 1000° C. A low temperature/low pressure CVD technique with Re2(CO)10 as the source material is used when Re is to be deposited.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ricky Amos, Douglas A. Buchanan, Cyril Cabral, Jr., Alessandro C. Callegari, Supratik Guha, Hyungjun Kim, Fenton R. McFeely, Vijay Narayanan, Kenneth P. Rodbell, John J. Yurkas
  • Patent number: 7863201
    Abstract: Methods of forming integrated circuit devices according to embodiments of the present invention include forming a PMOS transistor having P-type source and drain regions, in a semiconductor substrate, and then forming a diffusion barrier layer on the source and drain regions. A silicon nitride layer is deposited on at least portions of the diffusion barrier layer that extend opposite the source and drain regions. Hydrogen is removed from the deposited silicon nitride layer by exposing the silicon nitride layer to ultraviolet (UV) radiation. This removal of hydrogen may operate to increase a tensile stress in a channel region of the field effect transistor. This UV radiation step may be followed by patterning the first and second silicon nitride layers to expose the source and drain regions and then forming silicide contact layers directly on the exposed source and drain regions.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: January 4, 2011
    Assignees: Samsung Electronics Co., Ltd., International Business Machines Corporation, Infineon Technologies North America Corp., Infineon Technologies AG
    Inventors: Yong-Kuk Jeong, Bong-Seok Suh, Dong-Hee Yu, Oh-Jung Kwon, Seong-Dong Kim, O Sung Kwon
  • Patent number: 7863161
    Abstract: In a method of cutting a wafer, a supporting member is attached to an upper surface of the wafer on which semiconductor chips are formed. An opening is formed at a lower surface of the wafer along a scribe lane of the wafer. The lower surface of the wafer may be plasma-etched to reduce a thickness of the wafer. A tensile tape may be attached to the lower surface of the wafer. Here, the tensile tape includes sequentially stacked tensile films having different tensile modules. The supporting member is then removed. The tensile tape is cooled to increase the tensile modules between the tensile films. The tensile tape is tensed until the tensile films are cut using the tensile modules difference to separate the tensile tape from the semiconductor chips. Thus, the lower surface of the wafer may be plasma-etched without using an etching mask.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: January 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Sang Chan, Jun-Young Ko, Wha-Su Sin, Jae-Yong Park
  • Patent number: 7858501
    Abstract: A semiconductor wafer for semiconductor components and to a method for its production is disclosed. In one embodiment, the semiconductor wafer includes a front side with an adjoining near-surface active zone as basic material for semiconductor component structures. The rear side of the semiconductor wafer is adjoined by a getter zone for gettering impurity atoms in the semiconductor wafer. The getter zone contains oxygen precipitates. In the near-surface active zone, atoms of doping material are located on lattice vacancies. The atoms of doping material have a higher diffusion coefficient that the oxygen atoms.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: December 28, 2010
    Assignee: Infineon Technologies Austria AG
    Inventor: Hans-Joachim Schulze
  • Patent number: 7858478
    Abstract: A method for producing an integrated circuit including a trench transistor and an integrated circuit is disclosed.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: December 28, 2010
    Assignee: Infineon Technologies Austria AG
    Inventor: Franz Hirler
  • Patent number: 7858405
    Abstract: A process condition evaluation method for a liquid crystal display module (LCM) includes: a first step of obtaining a threshold power measuring pattern, an analysis sample for a cell bonding status in an LCD fabrication process, and obtaining a lower substrate sample by separating an upper substrate from the threshold power measuring pattern; a second step of supplying voltages on a gate pad on the lower substrate sample with sequentially increasing a voltage level by a predetermined unit by using an electrical device, and obtaining a threshold current and a threshold voltage by measuring currents at a drain pad whenever voltage increased by a predetermined unit is applied to the gate pad; and a third step of obtaining threshold power based on the threshold current and the threshold voltage, and thereby evaluating process conditions of the LCM.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: December 28, 2010
    Assignee: LG Display Co., Ltd.
    Inventors: Jeong-Yeop Lee, Hoon Choi, Young Seok Choi, Kwang-Sik Oh
  • Patent number: 7851899
    Abstract: A BGA package is disclosed including a base IC structure having a base substrate, with an opening running length-wise there through. A first semiconductor chip is mounted face-down on the base substrate so the bond pads thereof are accessible through the opening. The package also includes a secondary IC structure including a secondary substrate, having an opening running there through, and a second semiconductor chip. The second chip is mounted face-down on the secondary substrate so that the bond pads thereof are accessible through the opening in the secondary substrate. An encapsulant fills the opening in the secondary substrate and forms a substantially planar surface over the underside of the secondary substrate. The substantially planar surface is mounted to the first chip of the base IC structure through an adhesive. Wires connect a conductive portion of the secondary IC structure to a conductive portion of the base IC structure.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: December 14, 2010
    Assignees: UTAC - United Test and Assembly Test Center Ltd., Infineon Technologies
    Inventors: Fung Leng Chen, Seong Kwang Brandon Kim, Wee Lim Cha, Yi-Sheng Anthony Sun, Wolfgang Hetzel, Jochen Thomas
  • Patent number: 7846806
    Abstract: A system and method are disclosed for providing a self aligned silicon germanium (SiGe) heterojunction bipolar transistor using a mesa emitter-base architecture. The transistor of the present invention comprises a non-selective epitaxial growth (NSEG) collector, an NSEG base, an NSEG emitter and a raised external base that is formed by the selective epitaxial growth (SEG) of a doped polysilicon layer.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: December 7, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Jamal Ramdani, Mingwei Xu
  • Patent number: 7838375
    Abstract: A system and method are disclosed for providing an improved polyemit module for a self aligned heterojunction bipolar transistor architecture. The polyemit module of the transistor of the present invention is formed using a double layer deposition process. In the double layer deposition process, the first layer is a layer of emitter polysilicon and the second layer is a sacrificial layer of silicon germanium (SiGe). The shape and thickness of the emitter polysilicon layer of the polyemit module provides (1) a reduction in the overall resistance of the emitter and (2) an increase in the contact area between the emitter polysilicon layer and a contact structure that is more than three times the contact area that is provided in prior art polyemit modules.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: November 23, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Mingwei Xu, Jamal Ramdani
  • Patent number: 7838308
    Abstract: A method that includes forming a gate of a semiconductor device on a substrate and forming a recess for an embedded silicon-straining material in source and drain regions for the gate. In this method, a proximity value, which is defined as a distance between the gate and a closest edge of the recess, is controlled by controlling formation of an oxide layer provided beneath the gate. The method can also include feedforward control of process steps in the formation of the recess based upon values measured during the formation of the recess. The method can also apply feedback control to adjust a subsequent recess formation process performed on a subsequent semiconductor device based on the comparison between a measured proximity value and a target proximity value to decrease a difference between a proximity value of the subsequent semiconductor device and the target proximity value.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: November 23, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Rohit Pal, David E. Brown, Alok Vaid, Kevin Lensing
  • Patent number: 7833880
    Abstract: A process is provided for manufacturing micromechanical devices formed by joining two parts together by direct bonding. One of the parts (12) is made of silicon and the other one is made of a material chosen between silicon and a semiconductor ceramic or oxidic material. The joint between the two parts forms a cavity (14) containing the functional elements of the device (11), possible auxiliary elements and a getter material deposit (13).
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: November 16, 2010
    Assignee: Saes Getters S.p.A.
    Inventor: Enea Rizzi
  • Patent number: 7816242
    Abstract: A semiconductor device includes a plate of semiconductor layer, an insulator layer formed on the plate of semiconductor layer and brought into contact with the plate of semiconductor layer by at least two adjacent faces, a thickness of the insulator layer in the vicinity of a boundary line between the two adjacent faces being larger than that of the insulator layer in a region other than the vicinity of the boundary line, and a band of conductor layer formed facing a middle portion of the plate-like semiconductor layer via the insulator layer.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: October 19, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Mizuki Ono
  • Patent number: 7811896
    Abstract: In various embodiments, semiconductor structures and methods to manufacture these structures are disclosed. In one embodiment, a method to manufacture a semiconductor structure includes forming a cavity in a substrate. A portion of the substrate is doped, or a doped material is deposited over a portion of the substrate. At least a portion of the doped substrate or at least a portion of the doped material is converted to a dielectric material to enclose the cavity. The forming of the cavity may occur before or after the doping of the substrate or the depositing of the doped material. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: October 12, 2010
    Assignee: HVVi Semiconductors, Inc.
    Inventor: Bishnu Prasanna Gogoi