Patents Examined by Latanya N Crawford
  • Patent number: 11588085
    Abstract: A light emitting drive substrate, a manufacturing method of the light emitting drive substrate, a light emitting substrate and a display device. The light emitting drive substrate includes a first light-emitting subregion, a second light-emitting subregion, a periphery area, a first power supply wire and a second power supply wire. A resistance between the first end and the second end of the first power supply wire is equal to a resistance between the first end and the second end of the second power supply wire, and a wire length between the first end and the second end of the first power supply wire is not equal to a wire length between the first end and the second end of the second power supply wire.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: February 21, 2023
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Shengguang Ban, Zhanfeng Cao, Ke Wang
  • Patent number: 11587830
    Abstract: An etch back air gap (EBAG) process is provided. The EBAG process includes forming an initial structure that includes a dielectric layer disposed on a substrate and a liner disposed to line a trench defined in the dielectric layer. The process further includes impregnating a metallic interconnect material with dopant materials, filling a remainder of the trench with the impregnated metallic interconnect materials to form an intermediate structure and drive-out annealing of the intermediate structure. The drive-out annealing of the intermediate structure serves to drive the dopant materials out of the impregnated metallic interconnect materials and thereby forms a chemical- and plasma-attack immune material.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: February 21, 2023
    Assignee: TESSERA LLC
    Inventors: Benjamin D. Briggs, Elbert Huang, Takeshi Nogami, Christopher J. Penny
  • Patent number: 11588102
    Abstract: Embodiments include a resistive random access memory (RRAM) storage cell, having a resistive switching material layer and a semiconductor layer between two electrodes, where the semiconductor layer serves as an OEL. In addition, the RRAM storage cell may be coupled with a transistor to form a RRAM memory cell. The RRAM memory cell may include a semiconductor layer as a channel for the transistor, and also shared with the storage cell as an OEL for the storage cell. A shared electrode may serve as a source electrode of the transistor and an electrode of the storage cell. In some embodiments, a dielectric layer may be shared between the transistor and the storage cell, where the dielectric layer is a resistive switching material layer of the storage cell.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: February 21, 2023
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Gilbert Dewey, Rafael Rios, Jack T. Kavalieros, Shriram Shivaraman
  • Patent number: 11581507
    Abstract: A display panel is provided, which includes a base substrate, and a light-emitting device and an encapsulation structure sequentially arranged on the base substrate. The encapsulation structure includes at least one first encapsulation film layer, the first encapsulation film layer includes at least two inorganic layers arranged in a stack, and refractive indexes of the at least two inorganic layers sequentially increase in a direction close to the light-emitting device. The first encapsulation film layer is configured to adjust an angle of an ambient light incident on the light-emitting device to reduce the ambient light reflected from the display panel.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: February 14, 2023
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Xiaolong Li, Ming Liu, Zheng Liu, Dawei Wang, Yanliu Sun
  • Patent number: 11575071
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: February 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Daniel Lee Diehl, Vivek Agrawal, Anantha Subramani
  • Patent number: 11574839
    Abstract: Provided are a method for transferring a compound semiconductor single crystal thin film layer and a method for preparing a single crystal GaAs—OI composite wafer, including: preparing a graphite transition layer on a first substrate; growing the compound semiconductor single crystal thin film layer on the graphite transition layer; preparing a first dielectric layer on the compound semiconductor single crystal thin film layer; preparing a second dielectric layer on a second substrate; combining the first substrate and the second substrate by bonding the first dielectric layer and the second dielectric layer; applying a lateral external pressure, such that the compound semiconductor single crystal thin film layer and the first substrate are transversely split at the graphite transition layer, and the compound semiconductor single crystal thin film layer is transferred to the second substrate.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: February 7, 2023
    Assignee: BEIJING UNIVERSITY OF TECHNOLOGY
    Inventors: Zhiyong Wang, Jingjing Dai, Tian Lan
  • Patent number: 11569418
    Abstract: The invention provides a light-emitting diode grain structure with multiple contact points, including a P-type electrode, a conductive base plate, a light-emitting semiconductor layer, a plurality of ohmic contact metal points, a mesh-structured connection conductive layer, a connection point conductive layer, and an N-type electrode pad electrically connected to the connection point conductive layer. The plurality of ohmic contact metal points is arranged on an N-type semiconductor layer in a spreading manner, and is contacted with the N-type semiconductor layer. No ohmic contact is formed between the connection conductive layer and the N-type semiconductor layer. Accordingly, the metal points and the connection conductive layer can disperse a current, reduce a shading area, and improve the luminous efficiency and component reliability; and uniform light emission from a surface facilitates the light distribution uniformity of an original light source and exciting light after phosphor is coated.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: January 31, 2023
    Assignee: EXCELLENCE OPTO. INC.
    Inventors: Fu-Bang Chen, Kuo-Hsin Huang
  • Patent number: 11552018
    Abstract: A semiconductor structure with an improved metal structure is described. The semiconductor structure can include a substrate having an upper surface, an interconnect layer over the upper surface, and an additional structure deposited over the interconnect layer. The interconnect layer can include a patterned seed layer over the substrate, at least two metal lines over the seed layer, and a dielectric material between adjacent metal lines. A barrier layer can be deposited over the at least two metal lines. Methods of making the semiconductor structures are also described.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: January 10, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Jiun Liu, Chen-Yuan Kao, Hung-Wen Su, Ming-Hsing Tsai, Syun-Ming Jang
  • Patent number: 11536783
    Abstract: A semiconductor device includes a vertical Hall element provided in a first region of a semiconductor substrate, and having the first to the third electrodes arranged side by side in order along a first straight line; a circuit provided in a second region of the semiconductor substrate different from the first region, and having a heat source; and a second straight line intersecting orthogonally a current path for a Hall element drive current which flows between the first electrode and the third electrode. The second line passes a center of the vertical Hall element, and a center point of a region which reaches the highest temperature in the circuit during an operation of the vertical Hall element lies on the second straight line.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: December 27, 2022
    Assignee: ABLIC INC.
    Inventors: Takaaki Hioka, Tomoki Hikichi
  • Patent number: 11522125
    Abstract: A semiconductor stack for a Hall effect device, which comprises: a bottom barrier comprising AlxGa1-xAs, a channel comprising InyGa1-yAs, on the bottom barrier, a channel barrier with a thickness which is at least 2 nm and which is smaller than or equal to 15 nm, and which at least comprises a first layer comprising AlzGa1-zAs with 0.1?z?0.22, wherein the first layer has a thickness of at least 2 nm, wherein a conduction band edge of the bottom barrier and the first layer is higher than a conduction band edge of the channel, a doping layer comprising a composition of Al, Ga and As and doped with n-type material, a top barrier comprising a composition of Al, Ga and As.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: December 6, 2022
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventors: Kuan-Ting Ho, Lucian Barbut
  • Patent number: 11515449
    Abstract: Semiconductor light emitting devices and methods of fabricating the same are provided. The semiconductor light emitting device includes a light emitting structure, a first electrode, a first dielectric layer, a second electrode, and a vertical conductive pattern. The light emitting structure includes a first semiconductor layer, an active layer, and a second semiconductor layer that are sequentially stacked, and includes a first opening that penetrates the second semiconductor layer and the active layer, the first opening exposing the first semiconductor layer. The first electrode fills at least a portion of the first opening. The first dielectric layer is on the first electrode. The second electrode is on the light emitting structure and covers the first dielectric layer, the second electrode being electrically connected to the second semiconductor layer. The vertical conductive pattern surrounds outer lateral surfaces of the light emitting structure and is electrically connected to the first electrode.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: November 29, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jongin Yang, Yongil Kim, Juhyun Kim, Tan Sakong, Jonguk Seo, Suhyun Jo
  • Patent number: 11502247
    Abstract: A method of manufacturing a magnetoresistive device may comprise forming a first magnetic region, an intermediate region, and a second magnetic region of a magnetoresistive stack above a via; removing at least a portion of the second magnetic region using a first etch; removing at least a portion of the intermediate region and at least a portion of the first magnetic region using a second etch; removing at least a portion of material redeposited on the magnetoresistive stack using a third etch; and rendering at least a portion of the redeposited material remaining on the magnetoresistive stack electrically non-conductive.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: November 15, 2022
    Assignee: Everspin Technologies, Inc.
    Inventors: Sanjeev Aggarwal, Shimon, Kerry Joseph Nagel
  • Patent number: 11501997
    Abstract: A layer transfer process comprises depositing a first, temporary bonding layer of SOG comprising methylsiloxane by spin coating on a surface comprising substantially no silicon of an initial substrate, and applying a first heat treatment for densifying the first, temporary bonding layer. An intermediate substrate is joined to the initial substrate, and then thinned A second bonding layer of SOG comprising silicate or methylsilsesquioxane is deposited by spin coating on a surface of the thinned initial substrate and/or a final substrate, and a second heat treatment is applied for densifying the second bonding layer. The thinned initial substrate and the final substrate and then joined, and the intermediate substrate is detached thereafter. The process may be carried out at temperatures below 300° C. to avoid damaging components that may be present in the substrates.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: November 15, 2022
    Assignee: Soitec
    Inventor: Djamel Belhachemi
  • Patent number: 11495712
    Abstract: The present application provides a light emitting device, a method for making the same and a display apparatus. The light emitting device includes: a driving backplane; at least one set of driving electrodes disposed on the driving backplane, each set of driving electrodes including a first driving electrode and a second driving electrode; an epitaxial layer located on a side of the at least one set of driving electrodes away from the driving backplane; and at least one set of metal electrodes located on a side of the epitaxial layer close to the driving backplane, each set of metal electrodes including a first metal electrode and a second metal electrode, the first metal electrode and the second metal electrode being respectively connected to a first driving electrode and a second driving electrode, and a filling material being disposed between the first metal electrode and the second metal electrode.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: November 8, 2022
    Assignee: Chengdu Vistar Optoelectronics Co., Ltd.
    Inventors: Dong Wei, Xiaolong Yang, Rubo Xing, Xiaowei Li, Enqing Guo, Xuna Li
  • Patent number: 11489074
    Abstract: A fin field effect transistor (Fin FET) device includes a fin structure extending in a first direction and protruding from an isolation insulating layer disposed over a substrate. The fin structure includes a well layer, an oxide layer disposed over the well layer and a channel layer disposed over the oxide layer. The Fin FET device includes a gate structure covering a portion of the fin structure and extending in a second direction perpendicular to the first direction. The Fin FET device includes a source and a drain. Each of the source and drain includes a stressor layer disposed in recessed portions formed in the fin structure. The stressor layer extends above the recessed portions and applies a stress to a channel layer of the fin structure under the gate structure. The Fin FET device includes a dielectric layer formed in contact with the oxide layer and the stressor layer in the recessed portions.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: November 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kun-Mu Li, Tsz-Mei Kwok, Ming-Hua Yu, Chan-Lon Yang
  • Patent number: 11486944
    Abstract: An isolating Hall sensor structure having a support structure made of a substrate layer and an oxide layer, a semiconductor region of a first conductivity type which is integrally connected to a top side of the oxide layer, at least one trench extending from the top side of the semiconductor region to the oxide layer of the support structure, at least three first semiconductor contact regions of the first conductivity type, each extending from a top side of the semiconductor region into the semiconductor region. The at least one trench surrounds a box region of the semiconductor region. The first semiconductor contact regions are each arranged in the box region of the semiconductor region and are each spaced apart from one another. A metallic connection contact layer is arranged on each first semiconductor contact region.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: November 1, 2022
    Assignee: TDK-Micronas GmbH
    Inventors: Maria-Cristina Vecchi, Reinhard Erwe, Martin Cornils, Kerwin Khu
  • Patent number: 11482665
    Abstract: A semiconductor device includes a semiconductor substrate: a vertical Hall element formed in the semiconductor substrate, and having a magnetosensitive portion; a first excitation wiring disposed above the magnetosensitive portion, and configured to apply a first calibration magnetic field (M1) to the magnetosensitive portion; and second excitation wirings disposed above the magnetosensitive portion on one side and on another side of the first excitation wiring, respectively, along the first excitation wiring as viewed in plan view from immediately above a front surface of the semiconductor substrate, and configured to apply second calibration magnetic fields (M2) to the magnetosensitive portion.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: October 25, 2022
    Assignee: ABLIC INC.
    Inventors: Yohei Ogawa, Hirotaka Uemura
  • Patent number: 11482500
    Abstract: A method of forming an electronic device structure includes providing an electronic component having a first major surface, an opposing second major surface, a first edge surface, and an opposing second edge surface. A substrate having a substrate first major surface and an opposing substrate second major surface is provided. The second major surface of the first electronic component is placed proximate to the substrate first major surface and providing a conductive material adjacent the first edge surface of the first electronic component. The conductive material is exposed to an elevated temperature to reflow the conductive material to raise the first electronic component into an upright position such that the second edge surface is spaced further away from the substrate first major surface than the first edge surface. The method is suitable for providing electronic components, such as antenna, sensors, or optical devices in a vertical or on-edge.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: October 25, 2022
    Assignee: Amkor Technology Singapore Holding Pte. Ltd.
    Inventor: Shaun Bowers
  • Patent number: 11476179
    Abstract: A transistor package comprising: a substrate; a first transistor in thermal contact with the substrate, wherein the transistor comprises a gate; the substrate sintered to a heat sink through a sintered layer; an encapsulant that at least partially encapsulates the first transistor; and a Kelvin connection to the transistor gate.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: October 18, 2022
    Assignee: Tesla, Inc.
    Inventors: Wenjun Liu, Robert James Ramm, Alan David Tepe, Colin Kenneth Campbell, Dino Sasaridis
  • Patent number: 11476303
    Abstract: Structures including non-volatile memory elements and methods of fabricating a structure including non-volatile memory elements. First, second, and third non-volatile memory elements each include a first electrode, a second electrode, and a switching layer between the first electrode and the second electrode. A first bit line is coupled to the first electrode of the first non-volatile memory element and to the first electrode of the second non-volatile memory element. A second bit line is coupled to the first electrode of the third non-volatile memory element.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: October 18, 2022
    Assignee: GlobalFoundries Singapore Pte. Ltd.
    Inventors: Desmond Jia Jun Loy, Eng Huat Toh, Shyue Seng Tan