Patents Examined by Matthew Song
  • Patent number: 8980003
    Abstract: In a method of manufacturing a silicon carbide single crystal, a silicon carbide substrate having a surface of one of a (11-2n) plane and a (1-10n) plane, where n is any integer number greater than or equal to 0, is prepared. An epitaxial layer having a predetermined impurity concentration is grown on the one of the (11-2n) plane and the (1-10n) plane of the silicon carbide substrate by a chemical vapor deposition method so that a threading dislocation is discharged from a side surface of the epitaxial layer. A silicon carbide single crystal is grown into a bulk shape by a sublimation method on the one of the (11-2n) plane and the (1-10n) plane of the epitaxial layer from which the threading dislocation is discharged.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: March 17, 2015
    Assignee: DENSO CORPORATION
    Inventors: Hiroki Watanabe, Yasuo Kitou, Masami Naito
  • Patent number: 8968470
    Abstract: Disclosed herein are a graphite crucible for electromagnetic induction-based silicon melting and an apparatus for silicon melting/refining using the same, which performs a melting operation by a combination of indirect melting and direct melting. The crucible is formed of a graphite material and includes a cylindrical body having an open upper part through which a silicon raw material is charged into the crucible, and an outer wall surrounded by an induction coil, wherein a plurality of slits are vertically formed through the outer wall and an inner wall of the crucible such that an electromagnetic force created by an electric current flowing in the induction coil acts toward an inner center of the crucible to prevent a silicon melt from contacting the inner wall of the crucible.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: March 3, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Bo Yun Jang, Young Soo Ahn, Joon Soo Kim, Sang Hyun Park, Dong Kook Kim, Gwon Jong Yu
  • Patent number: 8968468
    Abstract: When pulling and growing a single crystal from a raw material melt by the Czochralski method, a boundary between the single crystal and the raw material melt is imaged by an optical sensor, and also the weight of the single crystal is measured by a weight sensor, a diameter value of the single crystal is calculated on the basis of first measured values of the diameter of the single crystal derived from image data captured by the optical sensor and second measured values of the diameter of the single crystal derived from weight data captured by the weight sensor, and a pulling rate of the single crystal and the temperature of the raw material melt are adjusted on the basis of the calculated diameter value to thereby control the diameter of the single crystal, and thus it is possible to accurately measure the diameter of a growing single crystal.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: March 3, 2015
    Assignee: Sumco Corporation
    Inventor: Ken Hamada
  • Patent number: 8956455
    Abstract: A seed crystal holder for growing single crystals, such as for use in scintillation detectors for nuclear medicine. The holder includes a cooling shaft, a fastener attached to the cooling shaft, and a gasket for separating the cooling shaft from the seed crystal. The gasket is made of a heat-transferable material such as steel wool or metallic foil to conduct heat from the seed crystal to the cooling shaft, while also providing a cushioning effect to cushion the seed crystal against potentially damaging motion forces.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: February 17, 2015
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Olexy V. Radkevich, Volodimir Protsenko
  • Patent number: 8951346
    Abstract: A silica glass crucible for pulling up a silicon single crystal including an outer layer formed from a natural silica glass layer, and an inner layer formed from a synthetic silica glass layer, wherein the synthetic silica glass layer includes a first synthetic silica glass layer formed in a region within a certain range from the center of a crucible bottom section, and a second synthetic silica glass layer formed in a region which excludes the formation region of the first synthetic silica glass layer, and wherein the first synthetic silica glass layer has a thickness of 0.5 mm or more and 1.5 mm or less and a concentration of an OH group included in the first synthetic silica glass layer being 100 ppm or less.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: February 10, 2015
    Assignee: Japan Super Quartz Corporation
    Inventors: Kazuhiro Harada, Masaki Morikawa, Satoshi Kudo
  • Patent number: 8951345
    Abstract: This invention relates to a system and a method of use for large ceramic member support and manipulation at elevated temperatures in non-oxidizing atmospheres, such as using carbon-carbon composite materials for producing high purity silicon in the manufacture of solar modules. The high temperature apparatus of this invention includes one or more support ribs, one or more cross braces in combination with the one or more support ribs, and a shaped support liner positionable upon the one or more support ribs and the one or more cross braces.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: February 10, 2015
    Assignee: AMG Idealcast Solar Corporation
    Inventors: Roger F. Clark, James A. Cliber, Nathan G. Stoddard, Jesse I. Gerber, Raymond J. Roberts, Mark A. Wilmerton
  • Patent number: 8945304
    Abstract: A system and method A method of growing an elongate nanoelement from a growth surface includes: a) cleaning a growth surface on a base element; b) providing an ultrahigh vacuum reaction environment over the cleaned growth surface; c) generating a reactive gas of an atomic material to be used in forming the nanoelement; d) projecting a stream of the reactive gas at the growth surface within the reactive environment while maintaining a vacuum of at most 1×10?4 Pascal; e) growing the elongate nanoelement from the growth surface within the environment while maintaining the pressure of step c); f) after a desired length of nanoelement is attained within the environment, stopping direction of reactive gas into the environment; and g) returning the environment to an ultrahigh vacuum condition.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: February 3, 2015
    Assignee: The Board of Regents of the Nevada System of Higher Education on behalf of the University of Nevada, Las Vegas University of Nevada
    Inventors: Biswajit Das, Myung B. Lee
  • Patent number: 8926753
    Abstract: Material gas hits the outer peripheral surface of a dam member and rides on the upper surface side, and then is allowed to flow along the main surface of a silicon single-crystal substrate placed on a susceptor. An upper lining member is disposed above the dam member so as to face the dam member. A gas introducing clearance is formed between the dam member and the upper lining member. In a vapor growth device, the upper lining member is regulated in size so that the length, formed in a direction along the horizontal reference line, of the gas introducing clearance gradually decreases as it is away from the horizontal reference line or is kept constant at any position. A vapor growth device capable of making more uniform the flowing route of a material gas flowing on the silicon single-crystal substrate, and a production method for an epitaxial wafer are provided.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: January 6, 2015
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventor: Toru Yamada
  • Patent number: 8921980
    Abstract: An aluminum nitride single crystal in the form of polygonal columns, the polygonal columns having the following properties [a] to [c]: [a] the content of a metal impurity is below a detection limit, [b] the average bottom area is from 5×103 to 2×105 ?m2, and [c] the average height is 50 ?m to 5 mm. The above aluminum nitride single crystal is preferably obtainable in a method including the steps of sublimating an aluminum nitride starting material (A) containing 0.1 to 30% by mass of a rare earth oxide by heating the starting material at a temperature of not lower than 2000° C., depositing aluminum nitride on a hexagonal single crystal substrate and thereby growing aluminum nitride single crystal in the shape of polygonal columns.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: December 30, 2014
    Assignees: Meijo University, Tokuyama Corporation
    Inventors: Hiroshi Amano, Yukihiro Kanechika, Masanobu Azuma
  • Patent number: 8920560
    Abstract: A method for manufacturing an epitaxial wafer includes: a step of pulling a single crystal from a boron-doped silicon melt in a chamber based on a Czochralski process; and a step of forming an epitaxial layer on a surface of a silicon wafer sliced from the single crystal. The single crystal is allowed to grow while passed through a temperature region of 800 to 600° C. in the chamber in 250 to 180 minutes during the pulling step. The grown single crystal has an oxygen concentration of 10×1017 to 12×1017 atoms/cm3 and a resistivity of 0.03 to 0.01 ?cm. The silicon wafer is subjected to pre-annealing prior to the step of forming the epitaxial layer on the surface of the silicon wafer, for 10 minutes to 4 hours at a predetermined temperature within a temperature region of 650 to 900° C. in an inert gas atmosphere. The method is to fabricate an epitaxial wafer that has a diameter of 300 mm or more, and that attains a high IG effect, and involves few epitaxial defects.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: December 30, 2014
    Assignee: Sumco Corporation
    Inventors: Yasuo Koike, Toshiaki Ono, Naoki Ikeda, Tomokazu Katano
  • Patent number: 8888914
    Abstract: The object is to provide a photoelectric surface member which allows higher quantum efficiency. In order to achieve this object, a photoelectric surface member 1a is a crystalline layer formed by a nitride type semiconductor material, and comprises a nitride semiconductor crystal layer 10 where the direction from the first surface 101 to the second surface 102 is the negative c polar direction of the crystal, an adhesive layer 12 formed along the first surface 101 of the nitride semiconductor crystal layer 10, and a glass substrate 14 which is adhesively fixed to the adhesive layer 12 such that the adhesive layer 12 is located between the glass substrate 14 and the nitride semiconductor crystal layer 10.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: November 18, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Tokuaki Nihashi, Masatomo Sumiya, Minoru Hagino, Shunro Fuke
  • Patent number: 8888915
    Abstract: A high-purity vitreous silica crucible which has high strength and is used for pulling a large-diameter single-crystal silicon ingot, includes a double laminated structure constituted by an outer layer composed of amorphous silica glass with a bubble content of 1 to 10% and a purity of 99.99% or higher and an inner layer composed of amorphous silica glass with a bubble content of 0.6% or less and a purity of 99.99% or higher, and in the portion between the upper opening end of the high-purity vitreous silica crucible and the ingot-pulling start line of a silicon melt surface in the step of pulling a single-crystal silicon ingot, a portion corresponding to 40 to 100 volume % from the upper opening end of the crucible is in a crystalline structure free from the crystallization promoter.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: November 18, 2014
    Assignee: Japan Super Quartz Corporation
    Inventor: Tadahiro Sato
  • Patent number: 8882909
    Abstract: Relaxed germanium buffer layers can be grown economically on misoriented silicon wafers by low-energy plasma-enhanced chemical vapor deposition. In conjunction with thermal annealing and/or patterning, the buffer layers can serve as high-quality virtual substrates for the growth of crack-free GaAs layers suitable for high-efficiency solar cells, lasers and field effect transistors.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: November 11, 2014
    Assignee: Dichroic Cell S.R.L.
    Inventor: Hans Von Kaenel
  • Patent number: 8882910
    Abstract: A substrate is formed of AlxGa1-xN, wherein 0<x?1. The substrate is a single crystal and is used producing a Group III nitride semiconductor device. A method for producing a substrate of AlxGa1-xN, wherein 0<x?1, includes the steps of forming a layer of AlxGa1-xN, wherein 0<x?1, on a base material and removing the base material. The method adopts the MOCVD method using a raw material molar ratio of a Group V element to Group III element that is 1000 or less, a temperature of 1200° C. or more for forming the layer of AlxGa1-xN, wherein 0<x?1. The base material is formed of one member selected from the group consisting of sapphire, SiC, Si, ZnO and Ga2O3. The substrate is used for fabricating a Group III nitride semiconductor device.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: November 11, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Hiroshi Amano, Akira Bando
  • Patent number: 8871026
    Abstract: In order to provide a vitreous silica crucible which does not employ a crystallization accelerator but is difficult to deform during its use even under high temperature, and is easily manufactured, there is provided a vitreous silica crucible for pulling single-crystal silicon wherein the outer surface layer is formed of a bubble-containing vitreous silica layer, the inner surface layer is formed of a vitreous silica layer whose bubbles are invisible to the naked eye, a surface of the outer surface layer includes an unmelted or half-melted silica layer (abbreviated as a half-melted silica layer), and the center line average roughness (Ra) of the half-melted silica layer is 50 to 200 ?m, also preferably, and the thickness of the half-melted silica layer is 0.5 to 2.0 mm.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: October 28, 2014
    Assignee: Japan Super Quartz Corporation
    Inventor: Hiroshi Kishi
  • Patent number: 8864907
    Abstract: A condition of a single crystal manufacturing step subjected to the Czochralski method applying an initial oxygen concentration, a dopant concentration or resistivity, and a heat treatment condition is determined simply and clearly on the basis of the conditions of a wafer manufacturing step and a device step so as to obtain a silicon wafer having a desired gettering capability. A manufacturing method of a silicon substrate which is manufactured from a silicon single crystal grown by the CZ method and provided for manufacturing a solid-state imaging device is provided. The internal state of the silicon substrate, which depends on the initial oxygen concentration, the carbon concentration, the resistivity, and the pulling condition of the silicon substrate, is determined by comparing a white spot condition representing upper and lower limits of the density of white spots as device characteristics with the measured density of white spots.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 21, 2014
    Assignee: Sumco Corporation
    Inventors: Kazunari Kurita, Shuichi Omote
  • Patent number: 8858709
    Abstract: A physical vapor deposition method of growing a crystal includes providing a seed crystal and a source material in spaced relation inside of a growth crucible that is at least in-part gas permeable to an unwanted gas. The growth chamber is heated whereupon the source material sublimates and is transported via a temperature gradient in the growth chamber to the seed crystal where the sublimated source material precipitates. Concurrent with heating the growth chamber, a purging gas is caused to flow inside or outside of the growth crucible in a manner whereupon the unwanted gas flows from the inside to the outside of the growth crucible via the gas permeable part thereof.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: October 14, 2014
    Assignee: II-VI Incorporated
    Inventors: Ilya Zwieback, Avinash K. Gupta
  • Patent number: 8858708
    Abstract: This invention provides a process for producing high-purity dense polycrystalline III-nitride slabs. A vessel which contains a group III-metal such as gallium or an alloy of group III-metals of shallow depth is placed in a reactor. The group III-metal or alloy is heated until a molten state is reached after which a halide-containing source mixed with a carrier gas and a nitrogen-containing source is flowed through the reactor vessel. An initial porous crust of III-nitride forms on the surface of the molten III-metal or alloy which reacts with the nitrogen-containing source and the halide-containing source. The flow rate of the nitrogen-containing source is then increased and flowed into contact with the molten metal to produce a dense polycrystalline III-nitride. The products produced from the inventive process can be used as source material for III-nitride single crystal growth which material is not available naturally.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: October 14, 2014
    Assignee: The United States of America As represented by the Secretary of the Air Force
    Inventors: Michael J. Callahan, Buguo Wang, John S. Bailey
  • Patent number: 8834628
    Abstract: A method is described for the manufacture of semiconductor nanoparticles. Improved yields are obtained by use of a reducing agent or oxygen reaction promoter.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: September 16, 2014
    Assignee: Life Technologies Corporation
    Inventors: Donald A. Zehnder, Joseph Treadway
  • Patent number: 8815011
    Abstract: The present invention relates to a magnetic garnet single crystal prepared by the liquid phase epitaxial (LPE) process and an optical element using the same as well as a method of producing the single crystal, for the purpose of providing a magnetic garnet single crystal at a reduced Pb content and an optical element using the same, as well as a method of producing the single crystal. The magnetic garnet single crystal is grown by the liquid phase epitaxial process and is represented by the chemical formula BixNayPbzM13-x-y-zFe5-wM2wO12 (M1 is at least one element selected from Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; and M2 is at least one element selected from Ga, Al, In, Ti, Ge, Si and Pt, provided that 0.5<x?2.0, 0<y?0.8, 0?z<0.01, 0.19?3-x-y-z<2.5, and 0?w?1.6).
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: August 26, 2014
    Assignee: TDK Corporation
    Inventor: Atsushi Ohido