Patents Examined by Matthew Song
  • Patent number: 8790462
    Abstract: A nanoengineered structure comprising an array of more than about 1000 nanowhiskers on a substrate in a predetermined spatial configuration, for use for example as a photonic band gap array, wherein each nanowhisker is sited within a distance from a predetermined site not greater than about 20% of its distance from its nearest neighbour. To produce the array, an array of masses of a catalytic material are positioned on the surface, heat is applied and materials in gaseous form are introduced such as to create a catalytic seed particle from each mass, and to grow, from the catalytic seed particle, epitaxially, a nanowhisker of a predetermined material, and wherein each mass upon melting, retains approximately the same interface with the substrate surface such that forces causing the mass to migrate across said surface are less than a holding force across a wetted interface on the substrate surface.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: July 29, 2014
    Assignee: Qunano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson, Thomas M. I. Martensson
  • Patent number: 8790463
    Abstract: Disclosed is a hot wall type substrate processing apparatus, including a processing chamber which is to accommodate at least one product substrate therein; a heating member which is disposed outside of the processing chamber and which is to heat the product substrate; a processing gas supply system connected to the processing chamber; and an exhaust system, wherein with a member from which a Si film is exposed being disposed such as to be opposed to a surface on which selective growth is to be effected of the product substrate, an epitaxial film including Si is allowed to selectively grow on a Si surface of the product substrate.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: July 29, 2014
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Atsushi Moriya, Yasuhiro Inokuchi, Yasuo Kunii
  • Patent number: 8784561
    Abstract: Methods are disclosed for inhibiting heat transfer through lateral sidewalls of a support member positioned beneath a crucible in a directional solidification furnace. The methods include the use of insulation positioned adjacent the lateral sidewalls of the support member. The insulation inhibits heat transfer through the lateral sidewalls of the support member to ensure the one-dimensional transfer of heat from the melt through the support member.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: July 22, 2014
    Assignee: MEMC Singapore Pte. Ltd. (UEN200614794D)
    Inventors: Rituraj Nandan, Benjamin Michael Meyer, Lee William Ferry
  • Patent number: 8778078
    Abstract: A process for producing a doped III-N bulk crystal, wherein III denotes at least one element of the main group III of the periodic system, selected from Al, Ga and In, wherein the doped crystalline III-N layer or the doped III-N bulk crystal is deposited on a substrate or template in a reactor, and wherein the feeding of at least one dopant into the reactor is carried out in admixture with at least one group III material. In this manner, III-N bulk crystals and III-N single crystal substrates separated therefrom can be obtained with a very homogeneous distribution of dopants in the growth direction as well as in the growth plane perpendicular thereto, a very homogeneous distribution of charge carriers and/or of the specific electric resistivity in the growth direction as well as in the growth plane perpendicular thereto, and a very good crystal quality.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: July 15, 2014
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Ferdinand Scholz, Peter Brückner, Frank Habel, Gunnar Leibiger
  • Patent number: 8758507
    Abstract: Techniques for the formation of silicon ingots and crystals using silicon feedstock of various grades are described. A common feature is adding a predetermined amount of germanium to the melt and performing a crystallization to incorporate germanium into the silicon lattice of respective crystalline silicon materials. Such incorporated germanium results in improvements of respective silicon material characteristics, including increased material strength and improved electrical properties. This leads to positive effects at applying such materials in solar cell manufacturing and at making modules from those solar cells.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: June 24, 2014
    Assignee: Silicor Materials Inc.
    Inventors: Fritz G. Kirscht, Matthias Heuer, Martin Kaes, Kamel Ounadjela
  • Patent number: 8753445
    Abstract: The invention relates to an apparatus and method for growing a high quality Si single crystal ingot and a Si single crystal ingot and wafer produced thereby. The growth apparatus controls the oxygen concentration of the Si single crystal ingot to various values thereby producing the Si single crystal ingot with high productivity and extremely controlled growth defects.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: June 17, 2014
    Assignee: Siltron, Inc.
    Inventor: Hyon-Jong Cho
  • Patent number: 8747553
    Abstract: A method of growing a p-type thin film of ?-Ga2O3 includes preparing a substrate including a ?-Ga2O3 single crystal, and growing a p-type thin film of ?-Ga2O3 on the substrate. The p-type thin film is grown in a manner that Ga in the thin film is replaced by a p-type dopant selected from H, Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, Hg, Tl, and Pb.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: June 10, 2014
    Assignee: Waseda University
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Patent number: 8747554
    Abstract: A unibody, multi-piece crucible for use in for use in elemental purification, compounding, and growth of semi-conductor crystals, e.g., in the process of molecular beam epitaxy (MBE) for melting silicon and the like at high temperature. The crucible has an outer coating layer that fixedly joins the multi pieces making up the crucible. The invention also provides a method for making a unibody containing structure comprising pyrolytic boron nitride having a negative draft, which method obviates the need of complicated overhang structure of graphite mandrels or the removal of the graphite mandrels by burning at high temperatures.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 10, 2014
    Assignee: Momentive Performance Materials Inc.
    Inventors: Yuji Morikawa, Kazuo Kawasaki, Sun-joong Hwang, Marc Schaepkens
  • Patent number: 8734583
    Abstract: One aspect of the present subject matter relates to a method for forming a transistor. According to an embodiment, a fin of amorphous semiconductor material is formed on a crystalline substrate, and a solid phase epitaxy (SPE) process is performed to crystallize the amorphous semiconductor material using the crystalline substrate to seed the crystalline growth. The fin has a cross-sectional thickness in at least one direction less than a minimum feature size. The transistor body is formed in the crystallized semiconductor pillar between a first source/drain region and a second source/drain region. A surrounding gate insulator is formed around the semiconductor pillar, and a surrounding gate is formed around and separated from the semiconductor pillar by the surrounding gate insulator. Other aspects are provided herein.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: May 27, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 8728232
    Abstract: A single crystal heat treatment method having a step of heating a single crystal of a specific cerium-doped silicate compound in an oxygen-poor atmosphere at a temperature T1 (units: ° C.) that satisfies the conditions represented by formula (3) below 800?T1<(Tm1?550)??(3) (wherein Tm1 (units: ° C.) represents the melting point of the single crystal).
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: May 20, 2014
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Tatsuya Usui, Naoaki Shimura, Yasushi Kurata, Kazuhisa Kurashige
  • Patent number: 8723288
    Abstract: A single crystal having a technologically generated cleavage surface that extends along a natural crystallographic cleavage plane with an accuracy of less than |0.001°| when measured over a length relevant for the technology of the single crystal or over each of a plurality of surface areas extending in the direction of separation and having a length ?2 mm within the technologically relevant surface area.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: May 13, 2014
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Ralf Hammer, Manfred Jurisch
  • Patent number: 8721787
    Abstract: A method for manufacturing a silicon single crystal is provided including producing a silicon melt in a chamber by melting a silicon raw material loaded into a silica glass crucible under a reduced pressure and high temperature, removing gas bubbles from within the silicon melt by rapidly changing at least the pressure or temperature within the chamber, and pulling up the silicon single crystal from the silicon melt after the gas bubbles are removed. When the pressure is rapidly changed, the pressure within the chamber is rapidly changed at a predetermined change ratio. In addition, when the temperature is rapidly changed, the temperature within the chamber is rapidly changed at a predetermined change ratio. In this way, Ar gas attached to an inner surface of the crucible and h is the cause of the generation of SiO gas is removed.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: May 13, 2014
    Assignee: Japan Super Quartz Corporation
    Inventors: Yukinaga Azuma, Masaki Morikawa
  • Patent number: 8702864
    Abstract: In a method for growing a silicon carbide single crystal on a silicon carbide single crystal substrate by contacting the substrate with a solution containing C prepared by dissolving C into the melt that contains Cr and X, which consists of at least one element of Ce and Nd, such that a proportion of Cr in a whole composition of the melt is in a range of 30 to 70 at. %, and a proportion of X in the whole composition of the melt is in a range of 0.5 at. % to 20 at. % in the case where X is Ce, or in a range of 1 at. % to 25 at. % in the case where X is Nd, and the silicon carbide single crystal is grown from the solution.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: April 22, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukio Terashima, Yasuyuki Fujiwara
  • Patent number: 8696811
    Abstract: A feed assembly and method of use thereof of the present invention is used for the addition of a high pressure dopant such as arsenic into a silicon melt for CZ growth of semiconductor silicon crystals. The feed assembly includes a vessel-and-valve assembly for holding dopant, and a feed tube assembly, attached to the vessel-and-valve assembly for delivering dopant to a silicon melt. An actuator is connected to the feed tube assembly and a receiving tube for advancing and retracting the feed tube assembly to and from the surface of the silicon melt. A brake assembly is attached to the actuator and the receiving tube for restricting movement of the feed tube assembly and locking the feed tube assembly at a selected position.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: April 15, 2014
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Massoud Javidi, Steve Garner
  • Patent number: 8696812
    Abstract: Thin films of ferroelectric material with a high mole fraction of Pb(A2+1/3B5+2/3)O3 substantially in a perovskite phase, wherein A is zinc or a combination of zinc and magnesium, and B is a valence 5 element such as niobium or tantalum, have been prepared. Typically, the mole fraction of Pb(A2+1/3B5+2/3)O3 in the ferroelectric material is >0.7. The method for preparing the thin films of ferroelectric material comprises providing a precursor solution containing lead, A2+, and B5+; modifying the precursor solution by addition of a polymer species thereto; applying the modified precursor solution to a surface of a substrate and forming a coating thereon; and (d) subjecting the coating to a heat treatment and forming the film in the perovskite phase. Optimal results have been obtained with PEG200 as the polymer species.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: April 15, 2014
    Assignee: Agency for Science, Technology and Research
    Inventors: Kui Yao, Shuhui Yu, Francis Eng Hock Tay
  • Patent number: 8685163
    Abstract: A method for growing a silicon carbide single crystal on a single crystal substrate comprising the steps of heating silicon in a graphite crucible to form a melt, bringing a silicon carbide single crystal substrate into contact with the melt, and depositing and growing a silicon carbide single crystal from the melt, wherein the melt comprises 30 to 70 percent by atom, based on the total atoms of the melt, of chromium and 1 to 25 percent by atom, based on the total atoms of the melt, of X, where X is at least one selected from the group consisting of nickel and cobalt, and carbon. It is possible to improve morphology of a surface of the crystal growth layer obtained by a solution method.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: April 1, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukio Terashima, Yasuyuki Fujiwara
  • Patent number: 8673073
    Abstract: A method for purifying silicon bearing materials for photovoltaic applications includes providing metallurgical silicon into a crucible apparatus. The metallurgical silicon is subjected to at least a thermal process to cause the metallurgical silicon to change in state from a first state to a second state, the second stage being a molten state not exceeding 1500 Degrees Celsius. At least a first portion of impurities is caused to be removed from the metallurgical silicon in the molten state. The molten metallurgical silicon is cooled from a lower region to an upper region to cause the lower region to solidify while a second portion of impurities segregate and accumulate in a liquid state region. The liquid state region is solidified to form a resulting silicon structure having a purified region and an impurity region. The purified region is characterized by a purity of greater than 99.9999%.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: March 18, 2014
    Inventors: Masahiro Hoshino, Cheng C. Kao
  • Patent number: 8663388
    Abstract: Disclosed are a single crystal wire and other single crystal articles, and a manufacturing method thereof. The method comprises the steps of: placing into a growth crucible at least one metal selected from the group consisting of gold, copper, silver, aluminum and nickel; heating and melting the metal placed in the growth crucible; growing a single crystal using metal crystal as a seed by Czochralski or Bridgman method; cutting the grown single crystal by electric discharge machining; and machining the cut single crystal and producing a wire or other articles such as a ring. In the method, the grown metal single crystal is cut into a disc-shaped piece by electric discharge machining. The piece is transformed into a single crystal wire or other articles by wire-cut electric discharge machining, and the single crystal wire can be used as a ring, a pendant, or a wire for high-quality cables for audio and video systems.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: March 4, 2014
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Se Young Jeong, Chae Ryong Cho, Sang Eon Park, Sung Kyu Kim
  • Patent number: 8652255
    Abstract: A method of: flowing a silicon source gas, a carbon source gas, and a carrier gas into a growth chamber under growth conditions to epitaxial grow silicon carbide on a wafer in the growth chamber; stopping or reducing the flow of the silicon source gas to interrupt the silicon carbide growth and maintaining the flow of the carrier gas while maintaining an elevated temperature in the growth chamber for a period of time; and resuming the flow of the silicon source gas to reinitiate silicon carbide growth. The wafer remains in the growth chamber throughout the method.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: February 18, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Robert E Stahlbush, Brenda L VanMil, Kok-Keong Lew, Rachael L Myers-Ward, David Kurt Gaskill, Charles R. Eddy, Jr.
  • Patent number: 8647433
    Abstract: Systems and methods are disclosed for crystal growth including features of reducing micropit cavity density in grown germanium crystals. In one exemplary implementation, there is provided a method of inserting an ampoule with raw material into a furnace having a heating source, growing a crystal using a vertical growth process wherein movement of a crystallizing temperature gradient relative to the raw material/crucible is achieved to melt the raw material, and growing, at a predetermined crystal growth length, the material to achieve a monocrystalline crystal, wherein monocrystalline ingots having reduced micro-pit densities are reproducibly provided.
    Type: Grant
    Filed: December 13, 2009
    Date of Patent: February 11, 2014
    Assignee: AXT, Inc.
    Inventors: Weiguo Liu, Xiao Li