Patents Examined by Patricia T. Nguyen
  • Patent number: 11469713
    Abstract: A power amplifier module includes first and second amplifiers, a first bias circuit, and an adjusting circuit. The first amplifier amplifies a first signal. The second amplifier amplifies a second signal based on an output signal from the first amplifier. The first bias circuit supplies a bias current to the first amplifier via a current path on the basis of a bias drive signal. The adjusting circuit includes an adjusting transistor having first, second, and third terminals. A first voltage based on a power supply voltage is supplied to the first terminal. A second voltage based on the bias drive signal is supplied to the second terminal. The third terminal is connected to the current path. The adjusting circuit adjusts the bias current on the basis of the power supply voltage supplied to the first amplifier.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: October 11, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Kenichi Shimamoto
  • Patent number: 11469717
    Abstract: Microwave amplifiers tolerant to electrical overstress are provided. In certain embodiments, a monolithic microwave integrated circuit (MMIC) includes a signal pad that receives a radio frequency (RF) signal, a ground pad, a balun including a primary section that receives the RF signal and a secondary section that outputs a differential RF signal, an amplifier that amplifies the differential RF signal, and a plurality of decoupling elements, some of them electrically connected between the primary section and the ground pad, others electrically connected in the secondary section to a plurality of the amplifier's nodes, and operable to protect the amplifier from electrical overstress. Such electrical overstress events can include electrostatic discharge (ESD) events, such as field-induced charged-device model (FICDM) events, as well as other types of overstress conditions.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: October 11, 2022
    Assignee: Analog Devices International Unlimited Company
    Inventors: Srivatsan Parthasarathy, Javier A. Salcedo, Miguel Chanca
  • Patent number: 11463061
    Abstract: An improved method of providing high burst power to audio amplifiers from limited power sources, using parallel power paths to increase system efficiency without need for a power path controller, thus utilizing a simplified circuit operation and maximizing average power available for both the amplifier and supporting circuitry.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: October 4, 2022
    Assignee: BIAMP SYSTEMS, LLC
    Inventors: David F. Baretich, Simon J. Broadley
  • Patent number: 11456705
    Abstract: Various methods and circuital arrangements for biasing one or more gates of stacked transistors of an amplifier are possible where the amplifier is configured to operate in at least an active mode and a standby mode. Circuital arrangements can reduce bias circuit standby current during operation in the standby mode while allowing a quick recovery to normal operating conditions of the amplifier. Biasing an input transistor of the stacked transistors can be obtained by using a replica stack circuit.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: September 27, 2022
    Assignee: pSemi Corporation
    Inventors: Poojan Wagh, Kashish Pal
  • Patent number: 11444588
    Abstract: Power amplifier electronics for controlling application of radio frequency (RF) energy generated using solid state electronic components may further be configured to control application of RF energy in cycles between high and low powers. The power amplifier electronics may include a semiconductor die on which one or more RF power transistors are fabricated, an output matching network configured to provide impedance matching between the semiconductor die and external components operably coupled to an output tab, and bonding wires bonded at terminal ends thereof to operably couple the one or more RF power transistors of the semiconductor die to the output matching network. The bonding wires may be copper bonding wires having a diameter of between about 10 microns and about 100 microns.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: September 13, 2022
    Assignee: Illinois Tool Works Inc.
    Inventors: Marco Carcano, Daniele Chirico, Michele Sclocchi
  • Patent number: 11444575
    Abstract: Included are: a first power source 3 configured to output a voltage required for a first gate bias voltage for turning a power amplifier 2 to an ON state; a second power source 4 configured to output a voltage required for a second gate bias voltage for turning the power amplifier 2 to an OFF state; a changeover switch 5 connected between the first power source 3 and the power amplifier 2 and configured to supply either the first gate bias voltage or the second gate bias voltage to the power amplifier 2 by switching a state between the first power source 3 and the power amplifier 2 to either an open state or a short-circuit state on the basis of a control signal related to on-off control of the power amplifier 2; and a resistance value varying unit 15 connected between the second power source 4 and the power amplifier 2 and configured such that a resistance value thereof is variable.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: September 13, 2022
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hideki Tango, Tatsuya Hashinaga, Harutoshi Tsuji
  • Patent number: 11444582
    Abstract: A power amplifier circuit includes an amplifier transistor, a bias circuit that supplies a bias current or voltage to the amplifier transistor, and a resistance element connected between a base of the amplifier transistor and the bias circuit. The bias circuit includes a voltage generation circuit, a first transistor having a base to which a first direct-current voltage is supplied and an emitter from which the bias current or voltage is supplied, a second transistor having a base to which a second direct-current voltage is supplied and an emitter connected to the emitter of the first transistor, a signal supply circuit that supplies an input signal to the base of the second transistor, and an impedance circuit disposed between the base of the first transistor and the base of the second transistor.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: September 13, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yuri Honda, Kenji Mukai, Fumio Harima
  • Patent number: 11431309
    Abstract: A method of controlling bandwidth and peaking over gain in a variable gain amplifier (VGA) device and structure therefor. The device includes at least three differential transistor pairs configured as a cross-coupled differential amplifier with differential input nodes, differential bias nodes, differential output nodes, a current source node, and two cross-coupling nodes. The cross-coupled differential amplifier includes a load resistor coupled to each of the differential output nodes and one of the cross-coupling nodes, and a load inductor coupled to the each of the cross-coupling nodes and a power supply rail. A current source is electrically coupled to the current source node. The cross-coupling configuration with the load resistance and inductance results in a lower bandwidth and lowered peaking at low gain compared to high gain. Further, the tap point into the inductor can be chosen as another variable to “tune” the bandwidth and peaking in a communication system.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: August 30, 2022
    Assignee: MARVELL ASIA PTE LTD.
    Inventor: Tom Peter Edward Broekaert
  • Patent number: 11431306
    Abstract: An compensation circuit for an Amplitude Modulation-Amplitude Modulation (AM-AM) of a Radio Frequency (RF) power amplifier, including: a first biasing circuit, a power amplifier, and a compensation circuit located between the first biasing circuit and the power amplifier; herein, the compensation circuit includes a diode detection circuit and a feedforward amplifier for compensating AM-AM distortion.
    Type: Grant
    Filed: December 12, 2020
    Date of Patent: August 30, 2022
    Assignee: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Jiangtao Yi, Qiang Su, Huadong Wen
  • Patent number: 11431310
    Abstract: A multi-path subsystem may include a first processing path, a second processing path, a mixed signal return path, and a calibration engine configured to: estimate and cancel a direct current (DC) offset of the mixed signal return path, estimate and cancel a DC offset between the first processing path and the second processing path, estimate and cancel a phase difference between the first processing path and a sum of the second processing path and the mixed signal return path, estimate and cancel a return path gain of the mixed signal return path, and track and correct for a gain difference between the first processing path and the second processing path.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: August 30, 2022
    Assignee: Cirrus Logic, Inc.
    Inventors: Amar Vellanki, Tejasvi Das, John L. Melanson
  • Patent number: 11424716
    Abstract: Storage devices are capable of utilizing receiver devices with native devices configured to support lower voltage supplies for higher read performances. The receiver device may include a current source circuit, first and second stage circuits, and a duty cycle balancer circuit. The first stage circuit may utilize first and second native devices with a threshold voltage (VTH) that enables proper lower voltage operations in saturation at high speeds. The current source stage circuit may utilize a third native device to track a transconductance and provide a reference current that becomes proportional to VTH to maintain tighter gain across process, variation, and temperature (PVT). The second stage circuit may utilize a current folding stage to provide a high gain for faster conversion of intermediate signals. The duty cycle balancer may utilize a fourth native device to balance a rise and fall delay skew across the PVT to maintain tighter duty cycle.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: August 23, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Shiv Mathur, Ashish Savadia, Tejaswini K
  • Patent number: 11424772
    Abstract: An RF receiver circuit configuration and design is limited by conditions and frequencies to simultaneously provide steady state low-noise signal amplification, frequency down-conversion, and image signal rejection. The RF receiver circuit may be implemented as one of a CMOS single chip device or as part of an integrated system of CMOS components.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: August 23, 2022
    Assignee: BeRex, Inc.
    Inventor: Oleksandr Gorbachov
  • Patent number: 11418154
    Abstract: A circuit includes first through fourth transistors and a device. The first transistor has a control input and first and second current terminals. The control input provides a first input to the circuit. The second transistor has a control input and first and second current terminals. The control input provides a second input to the circuit. The third transistor has a control input and first and second current terminals. The fourth transistor has a control input and first and second current terminals. The second current terminal of the fourth transistor is coupled to the second current terminal of the third transistor, and the control input of the fourth transistor is coupled to the first current terminals of the first and second transistors. The device is configured to provide a fixed voltage to the control input of the third transistor.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: August 16, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Vishnuvardhan Reddy J
  • Patent number: 11405003
    Abstract: A transimpedance amplifier (TIA) device design is disclosed. Symmetric components include first and second resistors Ri, Rfb, Re, Rm, Rx, Rc, and Rl, and transistors Q1-Q4. An optional mixer or cascode adds transistors Q5-Q8. Values for resistor components Rx provide extended feedback gain tuning in a TIA-based current amplifier or mixer implementations without greatly affecting the input impedance or requiring more attenuators. Example values for resistor components Rx range from about 50 to about 350 ohms.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: August 2, 2022
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Gregory M. Flewelling
  • Patent number: 11405046
    Abstract: Herein disclosed are multiple embodiments of a signal-processing circuit that may be utilized in various circuits, including conversion circuitry. The signal-processing circuit may receive an input and produce charges on multiple different capacitors during different phases of operation based on the input. The charges stored on two or more of the multiple different capacitors may be utilized for producing an output of the signal-processing circuit, such as by combing the charges stored on two or more of the multiple different capacitors. Utilizing the charges on the multiple different capacitors may provide for a high level of accuracy and robustness to variations of environmental factors, and/or a low noise level and power consumption when producing the output.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: August 2, 2022
    Assignee: ANALOG DEVICES, INC.
    Inventor: Jesper Steensgaard-Madsen
  • Patent number: 11398846
    Abstract: A transceiver having an antenna-connection port and an FEM-connection port is disclosed. Exemplary embodiments provide a transceiver having an antenna-connection port and an FEM-connection port that may support a connection to an external FEM and also support a connection to an antenna without a separate RF switch when an antenna is used without an FEM.
    Type: Grant
    Filed: December 1, 2019
    Date of Patent: July 26, 2022
    Assignee: Dialog Semiconductor Korea Inc.
    Inventor: Hee Yong Yoo
  • Patent number: 11387797
    Abstract: Envelope tracking systems for power amplifiers are provided herein. In certain embodiments, an envelope tracker is provided for a power amplifier that amplifies an RF signal. The envelope tracker includes an error amplifier that controls a voltage level of a power amplifier supply voltage of the power amplifier based on amplifying a difference between a reference signal and an envelope signal indicating an envelope of the RF signal. The envelope tracker further includes a multi-level switching circuit that generates an error amplifier supply voltage based on sensing a current of the error amplifier, and uses the error amplifier supply voltage to power the error amplifier.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: July 12, 2022
    Assignee: Skyworks Solutions, Inc.
    Inventors: Serge Francois Drogi, Florinel G. Balteanu, David Richard Pehlke
  • Patent number: 11387789
    Abstract: Charge pump tracker circuitry is disclosed having a first switch network configured to couple a first flying capacitor between a voltage input terminal and a ground terminal during a first charging phase and couple the first flying capacitor between the voltage input terminal and a pump output terminal during a first discharging phase. A second switch network is configured to couple a second flying capacitor between the voltage input terminal and the ground terminal during a second charging phase and couple the second flying capacitor between the voltage input terminal and the pump output terminal during a second discharging phase. A switch controller is configured to monitor first and second voltages across the first and second flying capacitors, respectively, during the first and second discharging phases and in response to control the first and second switch networks so that the first the second discharging phases alternate in an interleaved mode.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: July 12, 2022
    Assignee: QORVO US, INC.
    Inventors: Nadim Khlat, Michael R. Kay, Michael J. Murphy
  • Patent number: 11374540
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: June 28, 2022
    Assignee: pSemi Corporation
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Patent number: 11374544
    Abstract: A capacitive-coupled chopper instrumentation amplifier includes a first chopper, a first gain stage, a capacitive isolation stage electrically coupled between inputs of the first gain stage and the first chopper, a second gain stage, a second chopper electrically coupled between outputs of the first gain stage and inputs of the second gain stage, clamping circuitry electrically coupled between the inputs of the first gain stage and a reference voltage rail, and a controller. The controller is configured to (a) detect a change in a first common-mode voltage exceeding a threshold value, the first common-mode voltage being a common-mode voltage at the inputs of the amplifier, and (b) in response to detecting the change in the first common-mode voltage exceeding the threshold value, cause the clamping circuitry to clamp the inputs of the first gain stage to the reference voltage rail.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: June 28, 2022
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Yuan Chen, Daihong Fu, Jun Wu