Patents Examined by Patrick C Chen
  • Patent number: 11711072
    Abstract: A serial bus re-driver circuit includes an edge detector circuit and a booster circuit. The edge detector circuit is configured to detect a transition of serial bus signal. The booster circuit is coupled to the edge detector circuit, and is configured to switch current to the serial bus signal. The booster circuit includes a leading edge boost pulse generation circuit and a trailing edge boost pulse generation circuit. The leading edge boost pulse generation circuit is configured to switch a first current pulse to the serial bus signal at the transition of the serial bus signal. The trailing edge boost pulse generation circuit is configured to switch a second current pulse to the serial bus signal. The second current pulse is shorter than the first current pulse.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: July 25, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Srijan Rastogi, Srikanth Manian
  • Patent number: 11705897
    Abstract: An aspect relates to an apparatus, including: a ring oscillator coupled between a first node and a first voltage rail; a control circuit coupled to the first node; a delay line coupled between a second node and the first voltage rail; and a voltage regulator including an input coupled to the first node and an output coupled to the second node.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: July 18, 2023
    Assignee: QUALCOMM INCORPORATED
    Inventors: Xu Zhang, Xuhao Huang, Shitong Zhao
  • Patent number: 11705899
    Abstract: A serial IGBT voltage equalization method and system based on an auxiliary voltage source is disclosed. The method includes the following steps. (1) Detect a port dynamic voltage of each serial IGBT. (2) Perform dynamic overvoltage diagnosis respectively on the port dynamic voltage of each IGBT. (3) Supply emergency high level signal to the gate of the IGBT when there is dynamic overvoltage. (4) Stop supplying emergency high level signal to the gate of the IGBT, supply a constant voltage at the gate of the IGBT through the auxiliary voltage source. The invention provides a constant voltage through the auxiliary voltage source, prolongs the off time of the faulty IGBT, and turns off other IGBTs simultaneously, thereby achieving the purpose of serial IGBT voltage equalization.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: July 18, 2023
    Assignee: WUHAN UNIVERSITY
    Inventors: Yigang He, Lie Li, Liulu He, Chenyuan Wang
  • Patent number: 11705911
    Abstract: A delay locked loop circuit includes a delay line, a phase detector, a selection controller, and a charge pump. The delay line delays, based on a delay control voltage, a reference clock signal to generate an internal clock signal and a feedback clock signal. The phase detector compares phases of the internal clock signal and the feedback clock signal to generate a first detection signal and a second detection signal. The selection controller provides the reference clock signal as an up-signal and a down-signal. The charge pump generates the delay control voltage based on the up-signal and the down-signal.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: July 18, 2023
    Assignee: SK hynix Inc.
    Inventors: Yun Tack Han, Kyeong Min Kim
  • Patent number: 11699992
    Abstract: A semiconductor device includes a flip flop cell. The flip flop cell is formed on a semiconductor substrate, includes a flip flop circuit, and comprises a scan mux circuit, a master latch circuit, a slave latch circuit, a clock driver circuit, and an output circuit. Each of the scan mux circuit, the master latch circuit, the slave latch circuit, the clock driver circuit, and the output circuit includes a plurality of active devices which together output a resulting signal for that circuit based on inputs, is a sub-circuit of the flip flop circuit, and occupies a continuously-bounded area of the flip flop circuit from a plan view. At least a first sub-circuit and a second sub-circuit of the sub-circuits overlap from the plan view in a first overlap region, the first overlap region including part of a first continuously-bounded area for the first sub-circuit and part of a second continuously-bounded area for the second sub-circuit.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: July 11, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jintae Kim, Byounggon Kang, Changbeom Kim, Ha-Young Kim, Yongeun Cho
  • Patent number: 11695422
    Abstract: A delay locked loop circuit includes a first delay locked loop and a second delay locked loop having different characteristics. The first delay locked loop performs a delay-locking operation on a reference clock signal to generate a delay locked clock signal. The second delay locked loop performs a delay-locking operation on the delay locked clock signal to generate an internal clock signal.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: July 4, 2023
    Assignee: SK hynix Inc.
    Inventors: Yun Tack Han, Kyeong Min Kim
  • Patent number: 11687108
    Abstract: Apparatuses and methods relating generally to reduction of allocation of external power and/or ground pins of a microelectronic device are disclosed. In one such apparatus, an external power input pin is configured for receiving an input supply-side power having an external supply voltage level higher than an internal supply voltage level and an external supply current level lower than an internal supply current level. An internal power plane circuit coupled to the external power input pin is configured to step-down a voltage from the external supply voltage level to the internal supply voltage level and to step-up a current from the external supply current level to the internal supply current level to provide an internal power source.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: June 27, 2023
    Assignee: XILINX, INC.
    Inventor: Stephen M. Trimberger
  • Patent number: 11683065
    Abstract: A radio frequency (RF) switch includes switch transistors coupled in series. The RF switch includes a distributed gate bias network coupled to gate electrodes of the switch transistors. The RF switch also includes a distributed body bias network coupled to body electrodes of the switch transistors.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: June 20, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Ravi Pramod Kumar Vedula, George Pete Imthurn, Anton Arriagada, Sinan Goktepeli
  • Patent number: 11664800
    Abstract: A circuit for implementing an input/output connection in an integrated circuit device is described. The circuit comprises a pull-up circuit comprising a first plurality of transistors coupled in series, wherein a gate of a first transistor of the first plurality of transistors is configured to receive a first dynamic bias signal; a pull-down circuit comprising a second plurality of transistors coupled in series, the pull-down circuit being coupled to the pull-up circuit at an output node, wherein a gate of a first transistor of the second plurality of transistors is configured to receive a second dynamic bias signal; and an input/output contact coupled to the output node. A circuit for implementing an input/output connection in an integrated circuit device including a splitter circuit for receiving an input signal on an input pad is also described. A method of implementing an input/output connection in an integrated circuit device is also described.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: May 30, 2023
    Assignee: XILINX, INC.
    Inventors: VSS Prasad Babu Akurathi, Sabarathnam Ekambaram, Sasi Rama S. Lanka, Hari Bilash Dubey, Milind Goel
  • Patent number: 11658653
    Abstract: A gate resistance adjustment device has a waveform input unit that inputs waveforms of a drain voltage or a collector voltage and a drain current or a collector current at least one of during which a switching device is turned on and during which the switching device is turned off, an extraction unit that extracts time required for at least one of turning on or off the switching device and a steady-state drain current or a steady-state collector current of the switching device based on the waveforms input by the waveform input unit, a calculator that calculates a gate resistance of the switching device based on the time and the steady-state drain current or the steady-state collector current that are extracted by the extraction unit, and a setting unit that sets a gate resistance calculated by the calculator in the switching device.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: May 23, 2023
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazuto Takao, Yusuke Hayashi
  • Patent number: 11641199
    Abstract: A slew rate adjusting circuit includes an adjustment transistor configured to provide an adjustment current into an output port of an arithmetic amplifier, a first transistor connected between a power line of the arithmetic amplifier and the adjustment transistor, and a second transistor connected between the first transistor and an output node of the output port, wherein the adjustment transistor is turned on by the second transistor in response to a difference between an input voltage and an output voltage being equal to or greater than a reference voltage, and the adjustment current is provided to the output port in response to the adjustment transistor being turned on.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: May 2, 2023
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jung Hoon Sul, Dong Il Seo
  • Patent number: 11641203
    Abstract: A regenerative gate charging circuit includes an inductor coupled to a gate of a FET. An output control circuit is coupled to a timing control circuit and a bridged inductor driver, which is coupled to the inductor. A sense circuit is coupled to the gate and to the timing control circuit, which receives a control signal, generates output control signals in accordance with a first timing profile, and transmits the output control signals to the output control circuit. In accordance with the first timing profile, the output control circuit holds switches or controllable current sources of the bridged inductor driver in an ON state for a first period and holds the switches or controllable current sources in an OFF state for a second period. Gate voltages are sampled during the second period and after the first period. The timing control circuit generates a second timing profile using the sampled voltages.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: May 2, 2023
    Assignee: Silanna Asia Pte Ltd
    Inventors: Cameron Brown, Yashodhan Vijay Moghe
  • Patent number: 11637458
    Abstract: The disclosure features wireless energy transfer sources that include at least two source resonators and a power source, where: each of the at least two source resonators has a nominal impedance when a device resonator is not positioned on or near any of the at least two source resonators, the nominal impedances of each of the at least two source resonators varying by 10% or less from one another; and the at least two source resonators are configured so that during operation of the wireless energy transfer source, when a device resonator is positioned on or near a first one of the at least two source resonators: (a) the impedance of the first source resonator is reduced to a value smaller than the nominal impedances of each of the other resonators by a factor of 2 or more.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: April 25, 2023
    Assignee: WiTricity Corporation
    Inventors: Alexander P. McCauley, Arunanshu M. Roy, Noam Katz, Andre B. Kurs, Morris P. Kesler
  • Patent number: 11621628
    Abstract: Methods and apparatus for reducing electromagnetic interference (EMI) in power conversion stage line filter are provided herein. The method, for example, includes determining an estimated ripple voltage or estimated ripple current using a predictive model, generating a ripple cancellation signal of opposite polarity to the estimated ripple voltage or ripple current, while compensating for at least one of magnitude or phase distortions in a signal path, and injecting the ripple cancellation signal into a power supply's line filter to reduce a ripple voltage.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: April 4, 2023
    Assignee: Enphase Energy, Inc.
    Inventors: Brian Acker, Patrick L. Chapman, Martin Fornage
  • Patent number: 11611341
    Abstract: Sampling circuits and methods for sampling are provided. In a first operating phase, sampling capacitors are coupled to inputs, and in a second operating phase, to a common-mode signal.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: March 21, 2023
    Assignee: Infineon Technologies AG
    Inventors: Peter Bogner, Herwig Wappis
  • Patent number: 11601045
    Abstract: In some examples, a circuit includes an amplifier, a resistor, and a damping network. The amplifier has an amplifier output and first and second amplifier inputs. The first amplifier input is adapted to be coupled to a first terminal, and the second amplifier input is configured to receive a reference voltage. The resistor is coupled between the amplifier output and the first amplifier input. The damping network is coupled between the amplifier output and the first terminal.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: March 7, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yongbin Chu, Yogesh Kumar Ramadass
  • Patent number: 11557917
    Abstract: A switched mode power supply comprises a communication interface including an address terminal configured to couple to an external resistor for setting a communication address of the switched mode power supply. A control circuit is configured to determine the value of the external resistor a first time with a first technique and set the communication address of the switched mode power supply based on the value of the external resistor determined using the first technique if the value of the external resistor is greater than the threshold value. The control circuit is also configured to, if the value of the external resistor is less than the threshold value, determine the value of the external resistor a second time with a second technique and set the communication address of the switched mode power supply based on the value of the external resistor determined using the second technique.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: January 17, 2023
    Assignee: Astec International Limited
    Inventors: Bing Zhang, Mei Qin, Lian Liang, Wenyong Liu, Zhishuo Li
  • Patent number: 11558058
    Abstract: A delay locked loop circuit includes a first delay locked loop and a second delay locked loop having different characteristics. The first delay locked loop performs a delay-locking operation on a reference clock signal to generate a delay locked clock signal. The second delay locked loop performs a delay-locking operation on the delay locked clock signal to generate an internal clock signal.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: January 17, 2023
    Assignee: SK hynix Inc.
    Inventors: Yun Tack Han, Kyeong Min Kim
  • Patent number: 11552643
    Abstract: A semiconductor integrated circuit includes a converter converting an analog signal into a digital signal based on a clock signal; a comparator determining values of data based on the digital signal; a recovery circuit recovering the clock signal based on the digital signal and the data; and a control circuit. The recovery circuit includes a phase detector calculating a sum of a first value and offset, the first value being a value based on the digital signal and the data and relating to a phase of the clock signal; and a loop filter calculating a correction amount of the phase of the clock signal based on the sum. The control circuit is configured to gradually change the offset from a second value to zero after the second value is added as the offset.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: January 10, 2023
    Assignee: Kioxia Corporation
    Inventor: Fumihiko Tachibana
  • Patent number: 11545987
    Abstract: In an embodiment, a method includes initializing an input clock rotating register by sending a reset signal synchronized to an input clock signal and initializing an output clock rotating register by sending the reset signal synchronized to an output clock signal. The method further providing a data input synchronized to the output clock to a plurality of mux-flops. The output clock rotating register activates one of the plurality of mux-flops to receive the data input. The method further includes forwarding the data input via the one of the plurality of mux-flops to a multiplexer. The multiplexer has a selection input of the input clock rotating register. The method further includes selecting the data input as the output of the multiplexer to be a data output signal, such that the data output is synchronized with the input clock.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: January 3, 2023
    Assignee: Marvell Asia Pte, Ltd.
    Inventors: Nitin Mohan, Vasudevan Kandadi, Thucydides Xanthopoulos