Patents Examined by Tiffany Weston
  • Patent number: 9763585
    Abstract: The present invention relates to physiological signal processing, and in particular to methods and systems for processing physiological signals to predict a fluid responsiveness of a patient. A medical monitor for monitoring a patient includes an input receiving a photoplethysmograph (PPG) signal representing light absorption by a patient's tissue. The monitor also includes a perfusion status indicator indicating a perfusion status of the PPG signal, and a fluid responsiveness predictor (FRP) calculator programmed to calculate an FRP value based on a respiratory variation of the PPG signal. The FRP calculator applies a correction factor based on the perfusion status indicator.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: September 19, 2017
    Assignee: Covidien LP
    Inventors: Paul Stanley Addison, Rui Wang, Scott McGonigle, James N. Watson
  • Patent number: 9754082
    Abstract: Embodiments include a system for displays cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart and create a model representing at least a portion of the patient's heart based on the patient-specific data. The computer system may determine at least one value of the blood flow characteristic within the patient's heart based on the model. The computer system may also display a report comprising a representation of at least one artery corresponding to at least a portion the model, and display one or more indicators of the value of the blood flow characteristic on a corresponding portion of the at least one artery.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: September 5, 2017
    Assignee: HeartFlow, Inc.
    Inventors: Charles A. Taylor, Gregory R. Hart
  • Patent number: 9743846
    Abstract: A non-invasive venous pressure measurement apparatus is provided, including: a first cuff attached to a portion including a vein and an artery in a living body; a pressure control unit that changes a first applied pressure applied by the cuff to the portion; a pulse wave detection unit that detects a pulse wave from a pressure received by the cuff from the portion; another pulse wave detection unit that detects another pulse wave including at least an arterial pulse wave in another portion of the living body; an analyzing unit that analyzes a correlation between the two pulse waves, which are changed as the applied pressure is changed by the pressure control unit changes; and a venous pressure calculation unit that calculates a venous pressure based on the applied pressure and a result of analysis by the analyzing unit.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: August 29, 2017
    Assignee: Nihon Kohden Corporation
    Inventors: Teiji Ukawa, Tsuneo Takayanagi, Haruka Morimoto, Tatsuo Nishihara, Tatsuo Yoshida, Shiro Adachi, Mitsushi Hyogo
  • Patent number: 9737250
    Abstract: Devices are presented for measurement of an analyte concentration. The devices comprise: a sensor configured to generate a signal indicative of a concentration of an analyte; and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme domain comprising an enzyme, a base polymer, and a hydrophilic polymer which makes up from about 5 wt. % to about 30 wt. % of the enzyme domain.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 22, 2017
    Assignee: DexCom, Inc.
    Inventors: Jonathan Hughes, Robert J. Boock, Chris W. Dring, Huashi Zhang, Mark Wu, David Sze
  • Patent number: 9730632
    Abstract: The present invention relates to an integrated sleep diagnosis and treatment device, and more particularly to an integrated apnea diagnosis and treatment device. The present invention additionally relates to methods of sleep diagnosis and treatment. The sleep disorder treatment system of the present invention can use a diagnosis device to perform various forms of analysis to determine or diagnose a subject's sleeping disorder or symptoms of a subject's sleep disorder, and using this analysis or diagnosis can with or in some embodiments without human intervention treat the subject either physically or chemically to improve the sleeping disorder or the symptoms of the sleeping disorder. The diagnostic part of the system can use many different types of sensors and methods for diagnosing the severity of the symptoms of or the sleep disorder itself. The treatment part of the system can use a device to physically or chemically treat the subject's symptoms or sleep disorder itself.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: August 15, 2017
    Assignee: Cleveland Medical Devices Inc
    Inventors: Hani Kayyali, Dan Bishop, Brian M. Kolkowski
  • Patent number: 9706946
    Abstract: The present disclosure relates to an electronic spirometer that empowers users to quantitatively track and proactively manage respiratory diseases via simple integration with mobile devices, tablets, and computers. In one aspect, patients will be able to connect with their doctors to determine medication dosage and efficacy, avoid environmental triggers, and prevent attacks and exacerbations.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: July 18, 2017
    Assignee: SPARO INC.
    Inventors: Andrew Brimer, Abigail Cohen, Braden Eliason, Olga Neyman
  • Patent number: 9706932
    Abstract: A cuff for a blood pressure measuring system including a flexible elongate band having a first end and a second end and a sizing mechanism coupled to the band, wherein the sizing mechanism selectively permits relative movement between the first end and the second end of the band to expand and constrict a diameter of the band.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: July 18, 2017
    Assignee: FKA Distributing Co., LLC
    Inventors: Robert T. McCulloch, Jerome Joler, Matthew William Vergin
  • Patent number: 9700246
    Abstract: The invention relates to a method for the controlled delivery of a drug as a function of bioavailable drug concentration, a sensor device for detecting bioavailable drug concentration, and a delivery device that controls delivery of the drug based on the real-time detection of bioavailable drug concentration.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: July 11, 2017
    Assignees: THE UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION, THE UNIVERSITY OF MEMPHIS RESEARCH FOUNDATION
    Inventors: Edward Chaum, Erno Lindner, Jidong Guo
  • Patent number: 9687158
    Abstract: Provided is a fluorescence observation apparatus including a light source; a section generating a fluorescence image of an object; a section generating a reference image of the object; a section generating a corrected image in which emphasized are pixels of the reference image corresponding to pixels each having luminance value equal to or more than a first threshold value in the fluorescence image; a display unit displaying the reference image or the corrected image; a bleeding state determining section determining whether or not a bleeding region of the subject detected based on the reference image is more than a predetermined range; and a section switching between displaying the reference image on the display unit if the determining section determines that the region is not more than the range, and displaying the corrected on the image display if the determining section determines that the region is more than the range.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: June 27, 2017
    Assignee: OLYMPUS CORPORATION
    Inventor: Toshiaki Watanabe
  • Patent number: 9668658
    Abstract: A first calculation unit receives phase characteristics Pa(f) and Pb(f) outputted from frequency transform units, calculates a propagation time difference based on a phase difference between the two phase characteristics in a high-frequency component thereof, and calculates a pulse wave velocity by dividing a difference in the distances of vascular pathways from the heart to respective measurement areas. Meanwhile, a second calculation unit calculates a pulse wave velocity by dividing the stated difference in the distances by a appearance time difference at a predetermined position in respective pulse waveforms obtained by rendering the measurement signals Pa(t) and Pb(t) on a time axis. A comparison unit compares the pulse wave velocities, and in the case where the ratio thereof is outside a predetermined range, an evaluation result indicating that it is possible that a predetermined pathologic change is present in the vascular pathway is outputted to a display processing unit.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: June 6, 2017
    Assignee: OMRON HEALTHCARE CO., LTD.
    Inventors: Hironori Sato, Naoki Mori, Tomoko Hashimoto, Toshihiko Ogura, Shozo Takamatsu, Hideo Utsuno, Kimihiko Kichikawa, Hirofumi Ito
  • Patent number: 9668686
    Abstract: Systems, devices, and methods are provided that enable the sensing of an analyte level within, e.g., the dermal layer of the skin of a subject. These systems, devices, and methods can utilize modalities that increase perfusion in an area local to a dermal sensor.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: June 6, 2017
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Benjamin Jay Feldman, Hyun Cho, Austin Leach, John Charles Mazza
  • Patent number: 9629560
    Abstract: An implantable vital sign sensor including a housing including a first portion, the first portion defining a first open end, a second open end opposite the first end, and a lumen there through, the first portion being sized to be implanted substantially entirely within the blood vessel wall of the patient. A sensor module configured to measure a blood vessel blood pressure waveform is included, the sensor module having a proximal portion and a distal portion, the distal portion being insertable within the lumen and the proximal portion extending outward from the first open end.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: April 25, 2017
    Assignee: Thomas Jefferson University
    Inventor: Jeffrey I Joseph
  • Patent number: 9615745
    Abstract: A system and method for monitoring a physical parameter of a subject is provided. The system may include a casing with a sensor coupled to the casing. The sensor may be configured to detect a physical parameter of the subject. The physical parameter may include a chemical parameter of the subject. The system includes an endoscopic clip coupled to the casing and may include a wireless transmitter for transmitting a signal via a wireless medium. The signal encodes the physical parameter of the subject detected by the sensor and the wireless transmitter is electronically connected to the endoscopic clip. The system may further include a monitor configured to communicate with the wireless transmitter for receiving the signal encoding the physical parameter of the subject.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: April 11, 2017
    Assignee: The Brigham and Women's Hospital
    Inventors: Christopher C. Thompson, Robert Westervelt, Alex Nemiroski, Keith L. Obstein
  • Patent number: 9615779
    Abstract: The present embodiments relate generally to systems and methods for measuring an analyte in a host. More particularly, the present embodiments provide sensor applicators and methods of use with pushbutton activation that implant the sensor, withdraw the insertion needle, engage the transmitter with the housing, and disengage the applicator from the housing, all in one smooth motion. Some embodiments contemplate engagement of the transmitter with the housing after release of the applicator.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 11, 2017
    Assignee: DexCom, Inc.
    Inventors: Jack Pryor, Sebastian Bohm, David DeRenzy, Jason Halac, Daniel S. Kline, Phong Lieu, Adam J. Livingston, Steve Masterson, Paul V. Neale, Peter C. Simpson, Antonio Joao Ubach
  • Patent number: 9610450
    Abstract: An antenna structure, for use in an implantable medical device, may include an inner portion that is magnetically coupled to an outer portion. In one example, the inner and outer portions include conductive loops. In accordance with the techniques of this disclosure, a capacitive sensor is electrically coupled to one of the conductive loops of the antenna of the implantable medical device. As the capacitance of the capacitive sensor changes as a function of the sensed parameter, an impedance of the antenna varies with the output of the capacitive sensor. This variation in impedance of the antenna modulates a carrier signal with the measured parameter. In other words, the measured parameter is modulated onto the carrier signal as a change in amplitude caused by variation in impedance of antenna during radiation/transmission.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: April 4, 2017
    Assignee: Medtronics, Inc.
    Inventor: Yanzhu Zhao
  • Patent number: 9597011
    Abstract: Disclosed is a respiratory phase determination apparatus enabling a respiratory phase determination robust to personal differences in respiration among subjects and fluctuations in respiration of subjects in person without any need for calibration.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: March 21, 2017
    Assignee: PANASONIC CORPORATION
    Inventors: Mitsuru Endo, Noriaki Horii, Maki Yamada
  • Patent number: 9591992
    Abstract: An exhalation collected in a breath bag capable of expanding and contracting is sucked into a gas inlet vessel 21 with a given volume (Va), and then the gas inlet vessel 21 is communicated by means of valve V2 with a cell 11 that is maintained at an atmospheric pressure by being pre-filled with a sample gas or reference gas. After the communication, the gas pressure is measured by a pressure sensor 16 attached to the cell 11. Whether the exhalation collected in the breath bag is below a given amount or not can be accurately judged.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: March 14, 2017
    Assignee: OTSUKA PHARMACEUTICAL CO., LTD.
    Inventors: Yasuhiro Kubo, Masaaki Mori
  • Patent number: 9585605
    Abstract: A lactate sensor arrangement includes a catheter for withdrawing a test fluid sample, a sensor module for measuring an analyte such as lactate in the sample, and a pumping mechanism. A single uninterrupted flow path extends between the pumping mechanism and the catheter and within the flow path resides a sensor module containing a test chamber. The sensor arrangement also includes a control unit or controller that interfaces with a pumping mechanism driver. The sensor arrangement also includes a source of sensor calibration and anticoagulant solution, such as a reservoir.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: March 7, 2017
    Assignee: Pepex Biomedical, Inc.
    Inventor: James L. Say
  • Patent number: 9545536
    Abstract: To provide a training apparatus for effective and safe performance of KAATSU training. A training apparatus is made up of a tight fitting band 100, a main device 200, a measuring segment 300, and a control segment 400. The tight fitting band 100 is wrapped around a predetermined region of a limb. The tight fitting band 100 has an air-tight inflatable bag. The compression force applied to the limb can be varied by supplying the air to and removing the air from the inflatable bag. The main device 200 controls the supply and removal of the air into and from the inflatable bag. The measuring segment 300 is attached to the limb around which the tight fitting band 100 is wrapped to measure the magnitude of a pulse wave.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: January 17, 2017
    Assignee: SATO SPORTS PLAZA CO., LTD.
    Inventor: Yoshiaki Sato
  • Patent number: 9532720
    Abstract: A CPU acquires factor information for a degree of arteriosclerosis, stores a plurality of pseudo blood flow waveforms, generates a waveform estimated as a blood flow waveform by compositing the plurality of pseudo blood flow waveforms based on the factor information, decomposes a pulse waveform into waveforms of an ejected wave and a reflected wave using the pulse waveform and the waveform estimated as the blood flow waveform, and calculates an index of the degree of arteriosclerosis from a relationship between the ejected wave and the reflected wave obtained by decomposing the pulse waveform.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: January 3, 2017
    Assignee: OMRON HEALTHCARE Co., Ltd.
    Inventors: Kenji Fujii, Tatsuya Kobayashi