Patents Examined by Tiffany Weston
  • Patent number: 9161712
    Abstract: A mountable device includes a bio-compatible structure embedded in a polymer that defines at least one mounting surface. The bio-compatible structure has a first side defined by a first layer of bio-compatible material, a second side defined by a second layer of bio-compatible material, an electronic component, and a conductive pattern that defines sensor electrodes. A portion of the second layer of bio-compatible material is removed by etching to create at least one opening in the second side in which the sensor electrodes are exposed. The etching further removes a portion of the first layer of bio-compatible material so as to create at least one opening in the first side that is connected to the at least opening in the second side. With this arrangement of openings, analytes can reach the sensor electrodes from either the first side or the second side of the bio-compatible structure.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: October 20, 2015
    Assignee: Google Inc.
    Inventor: James Etzkorn
  • Patent number: 9144396
    Abstract: An apparatus and a method of analyzing constituents of gas in an oral cavity and exhaled breath is disclosed. The apparatus for analyzing the constituents of gas in the oral cavity and exhaled breath according to the present invention includes a filter to filter the outside gas by adsorbing polar molecules and non-polar molecules in the outside air and by removing water in the outside air in order to use the outside gas as carrier gas. The apparatus can also include a plurality of solenoid valves for controlling the flow of a carrier gas; a sensor for detecting components of the exhaled breath; a pump to draw the gas in the oral cavity or the exhaled breath and the carrier gas and discharge the gases to the outside; a control unit for controlling the components of the apparatus; and a display device to display results calculated by the control unit.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: September 29, 2015
    Inventors: Yong Sahm Choe, Chang Sik Lee, Je Young Youn, Young Sun Kang
  • Patent number: 9131855
    Abstract: The present invention provides an apparatus and methods for continuous intravascular measurement of whole blood concentration, blood pressure, and pulse pressure. The intravascular catheter incorporates a sensor to measure whole blood sound velocity, attenuation, backscatter amplitude, and blood flow velocity and also incorporates existing technologies for multiple physiologic measurements of whole blood. Pulse wave velocity and wave intensity are derived mathematically for purposes of estimating degree of local vascular tone.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: September 15, 2015
    Assignee: New Paradigm Concepts, LLC.
    Inventor: Edwin L. McEowen
  • Patent number: 9113789
    Abstract: Techniques are provided for estimating electrical conduction delays with the heart of a patient based on measured immittance values. In one example, impedance or admittance values are measured within the heart of a patient by a pacemaker or other implantable medical device, then used by the device to estimate cardiac electrical conduction delays. A first set of predetermined conversion factors may be used to convert the measured immittance values into conduction delay values. In some examples, the device then uses the estimated conduction delay values to estimate LAP or other cardiac pressure values. A second set of predetermined conversion factors may be used to convert the estimated conduction delays into pressure values. Techniques are also described for adaptively adjusting pacing parameters based on estimated LAP.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: August 25, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Brian Jeffrey Wenzel, Dorin Panescu, Mihir Naware, Jeffery Siou
  • Patent number: 9113829
    Abstract: A mountable device includes a bio-compatible structure embedded in a polymer that defines at least one mounting surface. The bio-compatible structure includes an electronic component having electrical contacts, sensor electrodes, and electrical interconnects between the sensor electrodes and the electrical contacts. The bio-compatible structure is fabricated such that it is fully encapsulated by a bio-compatible material, except for the sensor electrodes. In the fabrication, the electronic component is positioned on a first layer of bio-compatible material and a second layer of bio-compatible material is formed over the first layer of bio-compatible material and the electronic component. The electrical contacts are exposed by removing a portion of the second layer, a conductive pattern is formed to define the sensor electrodes and electrical interconnects, and a third layer of bio-compatible material is formed over the conductive pattern.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: August 25, 2015
    Assignee: Google Inc.
    Inventor: James Etzkorn
  • Patent number: 9103816
    Abstract: The present invention is to present a blood sample analyzing apparatus, comprising: an aspirator for aspirating a blood sample to be used for measurement; a coagulation determiner for determining whether the blood sample is coagulated or not; and an aspirating controller for controlling an operation of the aspirator based on a determination result by the coagulation determiner.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: August 11, 2015
    Assignee: Sysmex Corporation
    Inventors: Tokihiro Kosaka, Koichi Okubo
  • Patent number: 9072435
    Abstract: Adaptive attachments used in combination with a blood pressure cuff enable various blood pressure measurements to be taken in a hospital or other setting having various single and/or dual lumen manual or electronic blood pressure measuring equipment with a single, patient-worn cuff.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: July 7, 2015
    Assignee: WELCH ALLYN, INC.
    Inventors: Thaddeus J. Wawro, Raymond A. Lia
  • Patent number: 9011342
    Abstract: An intravascular sensor delivery device for measuring a physiological parameter of a patient, such as blood pressure, within a vascular structure or passage. In some embodiments, the device can be used to measure the pressure gradient across a stenotic lesion or heart valve, such as a fractional flow reserve (FFR) across a stenotic lesion. The sensor delivery device has a distal sleeve configured to pass or slide over a standard medical guidewire. The sensor delivery device can be sized to pass over different sizes of guidewires to enable usage in coronary and peripheral arteries, for example. The sensing mechanism (sensor) can be a fiber optic pressure sensor, such as a MEMS-based FabryPerot fiber optic pressure sensor, for example, or could employ some other technology, e.g., MEMS capacitive or piezoresistive sensor.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: April 21, 2015
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Dale R. Manstrom, Amy R. Raatikka, Robert F. Wilson, Edward R. Miller, Jung Kwon Pak
  • Patent number: 8998818
    Abstract: A system for detecting and measuring increased global or local intracranial pressure includes various devices for performing controlled occlusion of jugular cranial blood outflow and generating occlusion data related to said controlled occlusion, a cranial blood outflow pressure measurement device and a processor for processing jugular cranial blood outflow occlusion data and cranial blood outflow data to identify and/or measure a functional relationship between the jugular controlled occlusion and the jugular cranial blood outflow pressure. A device communicates the functional relationship a display device and/or a patient monitoring system. The processor also detects a state of equilibrium between the jugular cranial blood outflow pressure and the jugular occlusion pressure at occlusion.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: April 7, 2015
    Inventors: Henrikas Pranevicius, Mindaugas Pranevicius, Osvaldas Pranevicius, David Liebeskind
  • Patent number: 8979766
    Abstract: A sensor system comprises a mat (20) for placement over a patient's mattress including a number of sensors (10) located in the mat. The sensors include a sensor housing (12), a sound vibration sensing element in the form of a PVDF membrane (13), and means for amplifying sensed sounds. The PVDF membrane is coated/covered with a typically latex, impedance matching layer (14). The sensor automatically provides for auscultation, in which the patient's own weight, from the patient lying on the bed, compresses their thorax against the membrane, compressing also the patient's clothing, bed sheet and mattress cover material between the two. The recoil in the mattress opposes the body mass, thus compressing the membrane against the thorax. The impedance matching layer on top of the membrane transmits fine breath sounds through to the membrane as the latex does not weaken or attenuate the fine breath sounds but transmits them to the PVDF membrane. However being flexible, it is not uncomfortable to lie on.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: March 17, 2015
    Assignee: Sonomedical Pty. Ltd.
    Inventor: Colin Edward Sullivan
  • Patent number: 8971980
    Abstract: An analyte test device is constructed as an integrated, single-use, disposable cartridge which can be releasably installed into a compatible analyte test monitor. In use, the device can be used in conjunction with the monitor to lance the skin of a patient to create a blood sample and, in turn, calculate the concentration of a particular analyte in the expressed blood sample. In one embodiment, the device includes a base and a cover which are affixed together to create a test cartridge which has a substantially flat and low profile design. A lancet carrier is disposed between the base and the cover and includes a anchor fixedly mounted on the base and a lancet support member which is slidably mounted on the base, the anchor and the lancet support member being connected by a spring. A lancet is removably mounted on the lancet support member is disposed directly beneath an analyte test strip which secured to the underside of the cover.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: March 3, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Chad Harold Mace, Andrea Nicolaisen, Damon H. Dehart
  • Patent number: 8968207
    Abstract: Method and apparatus are provided for computing signals related to cardiac output from physiologic input signals related to circulatory pressures or flows. Method and apparatus are provided for constructing a transforming filter and applying said filter to the physiologic input signals in order to obtain a signal proportional to phasic cardiac output or time-averaged cardiac output. This invention provides a means for real-time monitoring of cardiac output and stroke volume which is of great clinical importance but not otherwise feasible by present techniques.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: March 3, 2015
    Assignee: Massachusetts Institute of Technology
    Inventor: Richard J. Cohen
  • Patent number: 8932221
    Abstract: Multi-directional transmitters for in-body devices, such as implantable and ingestible devices, are provided. Aspects of the in-body multi-direction transmitters of the invention include signal transmitters configured to transmit an identifying signal in at least two different directions in an x-y plane. Embodiments of the in-body devices are configured to emit a detectable signal upon contact with a target physiological site. Also provided are methods of making and using the devices of the invention.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: January 13, 2015
    Assignee: Proteus Digital Health, Inc.
    Inventors: Olivier Colliou, Timothy Robertson, Mark Zdeblick
  • Patent number: 8858448
    Abstract: A device can include at least a first physiologic sensor circuit configured to provide a first physiologic signal, a second physiologic sensor circuit configured to provide a second physiologic signal, and a processor circuit. The processor circuit includes a principal component analysis circuit configured to represent data determined from the at least first and second physiologic sensor circuits as at least first and second axes, respectively, in a multidimensional space, determine one or more principal components in the multidimensional space, determine a quantitative attribute of the first and the second physiologic signals using at least one of the determined principal components or a projection of the data along the at least one determined principal component, and provide an indication of heart failure status according to the quantitative attribute to at least one of a user or a process.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: October 14, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Abhilash Patangay, Ramesh Wariar, John D. Hatlestad, Yi Zhang
  • Patent number: 8852115
    Abstract: Embodiments of the present disclosure relate to patient monitors designed to display goal indicators showing progress toward achieving patient monitoring goals. The goal indicators may be displayed on a main monitoring screen of the patient monitors, allowing caretakers to easily evaluate how effective they have been in managing the patient's condition. According to certain embodiments, the goal indicators may display a numerical value indicating the percentage of time that a physiological parameter, such as SpO2 or pulse rate, was within predetermined goal limits. The patient monitors further may include user interfaces that enable a clinician to adjust parameters of the goal indicators, such as the goal limits and/or the goal time frame.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: October 7, 2014
    Assignee: Covidien LP
    Inventor: Randall Muir
  • Patent number: 8821402
    Abstract: The systems, devices, and methods described herein provide for the estimation and monitoring of cerebrovascular system properties and intracranial pressure (ICP) from one or more measurements or measured signals. These measured signals may include central or peripheral arterial blood pressure (ABP), and cerebral blood flow (CBF) or cerebral blood flow velocity (CBFV). The measured signals may be acquired noninvasively or minimally-invasively. The measured signals may be used to estimate parameters and variables of a computational model that is representative of the physiological relationships among the cerebral flows and pressures. The computational model may include at least one resistive element, at least one compliance element, and a representation of ICP.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: September 2, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Faisal Mahmood Kashif, Thomas Heldt, George Cheeran Verghese
  • Patent number: 8814805
    Abstract: Methods for recovering a detected signal in non-contact vital sign detection are provided. According to one embodiment, a detected reflected signal from a non-contact vital sign detection system can be received and provided along I channel and Q channel signal lines. A complex signal S(t) can then be reconstructed from the I channel and Q channel signal lines through complex signal demodulation. A Fourier transform can be used to obtain the detected signal's spectrum for spectrum analysis. Angular demodulation can be used to recover the information corresponding to original body movement. The complex signal demodulation and angular demodulation techniques used to provide information to determine original body movement are capable of avoiding the null detection point without limitations on frequency tuning or channel selection.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: August 26, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Jenshan Lin, Changzhi Li
  • Patent number: 8808194
    Abstract: Methods and systems for targeting, accessing and diagnosing diseased lung compartments are disclosed. The method comprises introducing a diagnostic catheter with an occluding member at its distal end into a lung segment via an assisted ventilation device; inflating the occluding member to isolate the lung segment; and performing a diagnostic procedure with the catheter while the patient is ventilated. The proximal end of the diagnostic catheter is configured to be attached to a console. The method may also comprise introducing the diagnostic catheter into the lung segment; inflating the occluding member to isolate the lung segment; and monitoring blood oxygen saturation. The method may further comprise introducing the diagnostic catheter into the lung segment; determining tidal flow volume in the lung segment; determining total lung capacity of the patient; and determining a flow rank value based on the tidal flow volume of the lung segment and the total lung capacity.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 19, 2014
    Assignee: Pulmonx Corporation
    Inventors: Surag Mantri, Srikanth Radhakrishnan
  • Patent number: 8801619
    Abstract: Embodiments of the present disclosure relate to a system and method for determining a likelihood of successful ventilator weaning for a patient undergoing mechanical or assisted ventilation. Specifically, embodiments provided herein include methods and systems for determining or predicting weaning readiness in a patient based on physiological parameters determined via photoplethysmography.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 12, 2014
    Assignee: Covidien LP
    Inventors: Clark R. Baker, Jr., Shannon Campbell
  • Patent number: 8764672
    Abstract: A system, method and device for monitoring the condition of an internal organ, such as a brain, by providing an internal electrode. The internal electrode is operatively connected to at least one surface, external, electrode, and a system handler. A signal is generated between the electrodes such that the electrical properties, including conductivity and impedance among others, can be measured at and across the electrodes. The electrode arrangement allows for continuous monitoring of an internal organ and, where desired, mapping of the electrical properties thereof. The system obtains pressure readings, nodal conductivity and/or electrode impedance to monitor, map and report the condition of the internal organ. A correlation procedure is provided for generating a graphical representation of the condition of an internal organ from the gathered data.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: July 1, 2014
    Inventors: Preston K. Manwaring, Ryan J. Halter, Kim H. Manwaring