Patents Examined by Tiffany Weston
  • Patent number: 9521979
    Abstract: This disclosure describes techniques for controlling spectral aggressors in a sensing device that uses a chopper amplifier to amplify an input signal prior to sampling the signal. In some examples, the techniques for controlling spectral aggressors may include generating a chopper-stabilized amplified version of an input signal based on a chopper frequency, sampling the chopper-stabilized amplified version of the input signal at a sampling rate to generate a sampled signal, and analyzing a target frequency band of the sampled signal. The chopper frequency and the sampling rate may cause spectral interference that is generated due to the chopper frequency to occur in the sampled signal at one or more frequencies that are outside of the target frequency band of the sampled signal. The techniques for controlling spectral aggressors may reduce the noise caused by the chopper frequency in the resulting sampled signal, thereby improving the quality of the signal.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: December 20, 2016
    Assignee: Medtronic, Inc.
    Inventors: Scott R. Stanslaski, David L. Carlson, Peng Cong, Timothy J. Denison, David E. Linde, Randy M. Jensen
  • Patent number: 9521972
    Abstract: A tubular sensor includes a tubular body having a longitudinally extending cavity, an insulation layer formed on the inner wall surface of the tubular body; and a plurality of longitudinally extending electrodes formed on the insulation layer and extending continuously from one end to the other end of the tubular body. The tubular sensor can be employed in a constituent measuring device. The tubular sensor can be manufactured by forming the insulation layer on a thin metal sheet, forming the plurality of electrodes on the insulation layer in stripes, cutting the thin metal sheet with the insulation layer and the electrodes formed thereon to produce a plate-shaped body having a development shape of the tubular body, and press working the plate-shaped body to form the tubular body.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: December 20, 2016
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventor: Hideo Kawamoto
  • Patent number: 9517028
    Abstract: A method and system for determining anaerobic threshold intensity (AnT) of a user in a freely performed physical exercise. A physiological response of a user is measured by heart rate and measured heart rate values are recorded as heart rate data. An external workload values are recorded and are each associated with one measured heart rate values to form a plurality of data points. The data points are filtered to form accepted data points, which are classified within a plurality of heart rate segments representing a heart rate within an anaerobic threshold (AnT) of the user. A data point with highest probability is stored for each segment. A first probability factor for each accepted data point is calculated. The calculated first probability factor is compared to a stored probability factor in each segment, and the higher probability factor is retained. AnT is calculated using the stored probabilities in each segment.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: December 13, 2016
    Assignee: Firstbeat Technologies Oy
    Inventors: Sami Saalasti, Kaisa Hämäläinen, Tero Myllymäki
  • Patent number: 9498130
    Abstract: A system for monitoring blood pressure and other physiologic parameters is provided. The system is designed such that it can be delivered to the patient with ease and minimal invasion. The system contains at least one self contained implantable sensing device consisting of a sensor, an electrical circuit for signal conditioning and magnetic telemetry, a biocompatible outer surface and seal, an anchoring method, and an external readout device. The implant is small in size so that it may be delivered to the desired location and implanted using a catheter, although direct surgical implantation is also possible. The circuit, sensor, and antenna for telemetry are packaged together and sealed hermetically to the biologic environment. The larger readout unit remains outside the body but proximal to the implant for minimizing communication distance.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: November 22, 2016
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Nader Najafi, Sonbol Massoud-Ansari, Collin Anderson Rich
  • Patent number: 9498150
    Abstract: There is provided a breath sampling tube comprising a deflector adapted to reduce liquid intake into a sampling inlet. There is also provided a breath sampling tube including a deflector adapted to deflect liquid droplets present in breath to reduce liquid at the sampling inlet. There is also provided a breath sampling system including a gas analyzer and a breath sampling tube comprising a deflector adapted to deflect breath to reduce liquid at the sampling inlet. There is also provided a breath sampling system including a gas analyzer and a breath sampling tube comprising a deflector adapted to deflect liquid droplets present in breath to reduce liquid at the sampling inlet.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: November 22, 2016
    Assignee: Oridion Medical 1987 Ltd.
    Inventors: Joshua Lewis Colman, Gershon Levitsky
  • Patent number: 9492106
    Abstract: A sensor for measuring a respiration is disclosed herein. The sensor includes at least one housing (7) having a first cavity (12) with a first port (11) allowing a respiration gas flow, and a second cavity (22) with a second port (21) also allowing a respiration gas flow. The sensor also includes at least one breathing detector (51) for acquiring a signal indicative of the respiration gas flowing through the first cavity and the second cavity. The at least one housing is equipped with at least one additional port (31) for removing the respiration gas flow coming from the first cavity and the second cavity, which additional port being separate from the first port and the second port.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: November 15, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Heikki Haveri
  • Patent number: 9492109
    Abstract: A medical sensor system (10, 10?) for detecting at least one characteristic (12) of an human and/or animal body has a sensor (14), a first characteristic carrier (16), and a characteristic carrier receptor (18). The first characteristic carrier (16) differs, in terms of at least one characteristic parameter, from a second characteristic carrier (20) which is present at least at the time of detection. The sensor (14) is preferably located in vivo at the time of detection of the at least one characteristic.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: November 15, 2016
    Assignee: Biotronik SE & Co. KG
    Inventors: Andreas Bunge, Sarah Biela, Sven Bode, Joerg Naehring, Hoc Khiem Trieu, Gerald Urban
  • Patent number: 9492094
    Abstract: In a blood pressure monitor, when a main unit is mounted on a mounting surface such as a desk, a bulging region of a first tube and a bulging region of a second tube, both located at a rear surface of the main unit, come into contact with the mounting surface. This can avoid the main unit from sliding even when the main unit is pulled by the first and second tubes. Consequently, a blood pressure monitor has a configuration in which the main unit is less likely to slide over the mounting surface even when the main unit is pulled by tubes connected to the main unit.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: November 15, 2016
    Assignee: OMRON HEALTHCARE Co., Ltd.
    Inventors: Masashi Kitamura, Kai Zhong, Chun-Peng Zhang
  • Patent number: 9386927
    Abstract: A method for monitoring blood pressure includes sensing and storing sympathetic nerve activity data of a patient via a recording lead of an implantable medical device. Changes in sympathetic nerve activity from the nerve activity data are determined. Corresponding changes in blood pressure are determined from the changes in sympathetic nerve activity. An alert signal and/or modification of therapy can be provided.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: July 12, 2016
    Assignee: Medtronic, Inc.
    Inventor: Daniel R. Kaiser
  • Patent number: 9364168
    Abstract: A method of diagnosing an air leak in a lung compartment of a patient may include: advancing a diagnostic catheter into an airway leading to the lung compartment; inflating an occluding member on the catheter to form a seal with a wall of the airway and thus isolate the lung compartment; measuring air pressure within the lung compartment during multiple breaths, using the diagnostic catheter; displaying the measured air pressure as an air pressure value on a console coupled with the diagnostic catheter; and determining whether an air leak is present in the lung compartment based on the displayed air pressure value during the multiple breaths.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: June 14, 2016
    Assignee: PulmonX Corporation
    Inventor: Surag Mantri
  • Patent number: 9326720
    Abstract: An electro-encephalography system includes an internal device for implantation below a scalp and above a skull of a patient, and an external device to be worn or carried outside the patient's body. The internal device includes a first electrode for receiving neurological signals originating from the patient's brain and a second electrode for receiving artifacts originating from sources other than the patient's brain. The external device includes a processing unit for receiving data from the internal device, mitigating the effects of the artifacts, and determining a neurological state of the patient. A therapy device is included to provide a therapy to the patient based on the patient's neurological state.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: May 3, 2016
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventor: Bryan McLaughlin
  • Patent number: 9326710
    Abstract: Apparatus and methods employing contact lenses having electrochemical sensors that have adjustable analyte-sensing sensitivity are provided. In some aspects, level of the analyte or biological substance is detected and a number of sub-electrodes of the sensor are turned on or off based on the level of the analyte or biological substance. The sensitivity of the sensor is adjusted based on the number of sub-electrodes that are turned on or off. In some aspects, the current level from the sensor is employed in determining the number of sub-electrodes to turn on or off. In one aspect, a contact lens includes: a substrate; a power component; a circuit and an adjustment circuit. The circuit can include a potentiostat; and a sensor electrically coupled to the potentiostat, and configured to sense a level of an analyte. The sensitivity of the sensor can be adjustable by the adjustment circuit.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: May 3, 2016
    Assignee: Verily Life Sciences LLC
    Inventors: Zenghe Liu, Brian Otis
  • Patent number: 9301716
    Abstract: The present invention relates to a method for evaluating a value representing the mass or the concentration of a substance comprised by a tissue or a bodily fluid of a patient, the method including the steps of a) determining a relation between one or more calculated or measured value(s) reflecting the mass or the concentration and a distribution space of the patient or an approximation thereof, and b) assessing whether the relation fulfills a criterion. The present invention further relates to systems and computer programs for performing this method.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: April 5, 2016
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventors: Paul Chamney, Ulrich Moissl, Peter Wabel, Volker Nier, Sebastian Wieskotten
  • Patent number: 9302045
    Abstract: Disclosed are methods and apparatuses for determining analyte concentration in a sample such as bodily fluid. Systems and methods disclosed herein can also include a treatment dosing system to infuse or inject a treatment dose (e.g. insulin, dextrose, etc.) and provide glycemic control. The dose of the treatment drug may be based on the patient's calculated sensitivity to treatment dosing, for example. The dose of the treatment drug may be based on the concentration of the analyte or the average value for the concentration of the analyte and/or the rate of change of the value of the concentration of the analyte. Delivery of the treatment drug can be cut off if the determined analyte concentration indicates that continued delivery would be harmful to the patient.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: April 5, 2016
    Assignee: OptiScan Biomedical Corporation
    Inventor: Peter Rule
  • Patent number: 9282903
    Abstract: A device for measuring biological information by being worn on a person includes a sensor unit subjected to measure biological information, a device main unit provided with a concavity and subjected to accommodate the sensor unit, and a holding unit supported on one side by the sensor unit and on the other side by the device main unit; wherein the holding unit is elastic and has a space on one side of the concavity to hold the sensor unit so that at least part of the sensor unit extends outside from the device main unit, and wherein the sensor unit is displaced relative to the device main unit by elastic deformation in accordance with an external force applied to the sensor unit.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: March 15, 2016
    Assignee: Seiko Epson Corporation
    Inventors: Yoshitaka Iijima, Shigemitsu Tanaka, Yoshihiro Hidai
  • Patent number: 9265449
    Abstract: Techniques associated with a wearable device structure with enhanced motion detection by a motion sensor are described, including a band configured to be worn, a nodule coupled to the band, the nodule including a structure configured to enhance detection of movement of an adjacent skin surface, the structure having an articulator configured to rotate in a plurality of planes, and a sensor coupled to the structure and configured to detect rotational motion.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 23, 2016
    Assignee: AliphCom
    Inventor: Thomas Alan Donaldson
  • Patent number: 9226668
    Abstract: A blood pressure monitor includes a cuff to be wound around a living body of a subject, a measuring unit for measuring blood pressure with said cuff wound around the living body of said subject, a detecting unit for detecting an inclination angle of said cuff, a specifying unit for specifying a current inclination level among a plurality of predetermined inclination levels upon measurement by said measuring unit, based on a result of detection by said detecting unit, a memory for storing therein the inclination level specified by said specifying unit, in association with blood pressure data measured by said measuring unit, and a notifying unit for providing notification of at least one past inclination level of the plurality of inclination levels stored in said memory and said current inclination level, in association with each other.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: January 5, 2016
    Assignee: OMRON HEALTHCARE Co., Ltd.
    Inventors: Tomohiro Kukita, Yukiko Mitsunami, Kenji Aritome, Hiroyuki Kato, Yoshihide Onishi
  • Patent number: 9222951
    Abstract: A method for operating measuring equipment for detecting an analyte in a bodily fluid by means of a continuously measuring blood glucose sensor. A calibration method is carried out for the prospective calibration of the measuring equipment. At least three calibration points are detected in the calibration method, wherein each calibration point comprises a measurement signal from the measuring equipment and a reference value of an associated reference measurement. A plurality of possible slopes are established between the calibration points. At least one robust estimation method using a formation of at least one median is used to determine a probable slope from the plurality of possible slopes. Furthermore, a measurement is carried out. During the measurement and using the probable slope, a concentration of the analyte in the bodily fluid is deduced from a measurement signal from the measuring equipment and the probable slope.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: December 29, 2015
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Nikolaus Schmitt, Gerhard Frisch
  • Patent number: 9211085
    Abstract: A respiration sensing subsystem includes a band made of stretchable material and a pair of spaced conductors extending along the band in a flexible pattern. A moisture repellant compound is added to the stretchable material of the band between the pair of spaced conductors.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: December 15, 2015
    Assignee: Foster-Miller, Inc.
    Inventor: Richard B. Streeter
  • Patent number: 9186072
    Abstract: An intravascular sensor delivery device for measuring a physiological parameter of a patient, such as blood pressure, within a vascular structure or passage. In some embodiments, the device can be used to measure the pressure gradient across a stenotic lesion or heart valve. For example, such a device may be used to measure fractional flow reserve (FFR) across a stenotic lesion in order to assess the severity of the lesion. The sensor delivery device has a distal sleeve configured to pass or slide over a standard medical guidewire. Some distance back from the sensor and distal sleeve, the device separates from the guidewire to permit independent control of the sensor delivery device and the guidewire. The sensor delivery device can be sized to pass over different sizes of guidewires to enable usage in coronary and peripheral arteries, for example.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: November 17, 2015
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Dale R. Manstrom, Amy R. Raatikka, Robert F. Wilson, Edward R. Miller, Jung Kwon Pak