Patents by Inventor Adel A. Elsherbini

Adel A. Elsherbini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11605603
    Abstract: Embodiments may relate to a microelectronic package that includes a radio frequency (RF) chip coupled with a die by interconnects with a first pitch. The RF chip may further be coupled with a waveguide of a package substrate by interconnects with a second pitch that is different than the first pitch. The RF chip may facilitate conveyance of data to the waveguide as an electromagnetic signal with a frequency greater than approximately 20 gigahertz (GHz). Other embodiments may be described or claimed.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: March 14, 2023
    Assignee: Intel Corporation
    Inventors: Adel A. Elsherbini, Georgios Dogiamis, Telesphor Kamgaing, Henning Braunisch, Johanna M. Swan, Shawna M. Liff, Aleksandar Aleksov
  • Publication number: 20230074970
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic assembly may include a first microelectronic component having a first direct bonding region, wherein the first direct bonding region includes first metal contacts and a first dielectric material between adjacent ones of the first metal contacts; a second microelectronic component having a second direct bonding region, wherein the second direct bonding region includes second metal contacts and a second dielectric material between adjacent ones of the second metal contacts, wherein the first microelectronic component is coupled to the second microelectronic component by interconnects, and wherein the interconnects include individual first metal contacts coupled to respective individual second metal contacts; and a void between an individual first metal contact that is not coupled to a respective individual second metal contact, wherein the void is in the first direct bonding region.
    Type: Application
    Filed: November 9, 2022
    Publication date: March 9, 2023
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Veronica Aleman Strong, Shawna M. Liff, Brandon M. Rawlings, Jagat Shakya, Johanna M. Swan, David M. Craig, Jeremy Alan Streifer, Brennen Karl Mueller
  • Publication number: 20230073026
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic assembly may include a first die, having a first surface and an opposing second surface, in a first layer, and including a first metallization stack at the first surface; a device layer on the first metallization stack; a second metallization stack on the device layer; and an interconnect on the first surface of the die electrically coupled to the first metallization stack; a conductive pillar in the first layer; and a second die, having a first surface and an opposing second surface, in a second layer on the first layer, wherein the first surface of the second die is coupled to the conductive pillar and to the second surface of the first die by a hybrid bonding region.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 9, 2023
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Kimin Jun, Shawna M. Liff, Johanna M. Swan, Han Wui Then
  • Patent number: 11600594
    Abstract: Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate having a first surface and an opposing second surface, and a die secured to the package substrate, wherein the die has a first surface and an opposing second surface, the die has first conductive contacts at the first surface and second conductive contacts at the second surface, and the first conductive contacts are coupled to conductive pathways in the package substrate by first non-solder interconnects.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: March 7, 2023
    Assignee: Intel Corporation
    Inventors: Shawna M. Liff, Adel A. Elsherbini, Johanna M. Swan, Arun Chandrasekhar
  • Publication number: 20230060727
    Abstract: A microelectronic assembly is provided comprising a first integrated circuit (IC) die having an electrical load circuit, a second IC die having a portion of a voltage regulator (VR), and a third IC die comprising inductors of the VR. The third IC die is between the first IC die and the second IC die, and the VR receives power at a first voltage and provides power at a second voltage to the electrical load circuit, the second voltage being lower than the first voltage. In various embodiments, the inductors in the third IC die comprise magnetic thin films. The third IC die may be a passive die without any active elements in some embodiments. In some embodiments, the microelectronic assembly further comprises a package substrate having conductive pathways, and the second IC die is between the third IC die and the package substrate.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Applicant: Intel Corporation
    Inventors: Kaladhar Radhakrishnan, Krishna Bharath, William J. Lambert, Adel A. Elsherbini, Sriram Srinivasan, Christopher Schaef
  • Patent number: 11594801
    Abstract: Embodiments of the invention include autonomous vehicles and mm-wave systems for communication between components. In an embodiment the vehicle includes an electronic control unit (ECU). The ECU may include a printed circuit board (PCB) and a CPU die packaged on a CPU packaging substrate. In an embodiment, the CPU packaging substrate is electrically coupled to the PCB. The ECU may also include an external predefined interface electrically coupled to the CPU die. In an embodiment, an active mm-wave interconnect may include a dielectric waveguide, and a first connector coupled to a first end of the dielectric waveguide. In an embodiment, the first connector comprises a first mm-wave engine, and the first connector is electrically coupled to the external predefined interface. Embodiments may also include a second connector coupled to a second end of the dielectric waveguide, wherein the second connector comprises a second mm-wave engine.
    Type: Grant
    Filed: July 1, 2017
    Date of Patent: February 28, 2023
    Assignee: Intel Corporation
    Inventors: Georgios Dogiamis, Sasha Oster, Telesphor Kamgaing, Erich Ewy, Kenneth Shoemaker, Adel Elsherbini, Johanna Swan
  • Patent number: 11581238
    Abstract: A heat spreading material is integrated into a composite die structure including a first IC die having a first dielectric material and a first electrical interconnect structure, and a second IC die having a second dielectric material and a second electrical interconnect structure. The composite die structure may include a composite electrical interconnect structure comprising the first interconnect structure in direct contact with the second interconnect structure at a bond interface. The heat spreading material may be within at least a portion of a dielectric area through which the bond interface extends. The heat spreading material may be located within one or more dielectric materials surrounding the composite interconnect structure, and direct a flow of heat generated by one or more of the first and second IC dies.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: February 14, 2023
    Assignee: Intel Corporation
    Inventors: Shawna Liff, Adel Elsherbini, Johanna Swan, Jimin Yao, Veronica Strong
  • Patent number: 11581282
    Abstract: In embodiments, a semiconductor package may include a first die and a second die. The package may additionally include a serializer/deserializer (SerDes) die coupled with the first and the second dies. The SerDes die may be configured to serialize signals transmitted from the first die to the second die, and deserialize signals received from the second die. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: February 14, 2023
    Assignee: Intel Corporation
    Inventors: Adel A. Elsherbini, Johanna M. Swan, Shawna M. Liff, Gerald S. Pasdast
  • Patent number: 11581272
    Abstract: Embodiments may relate to a multi-chip microelectronic package that includes a first die and a second die coupled to a package substrate. The first and second dies may have respective radiative elements that are communicatively coupled with one another such that they may communicate via an electromagnetic signal with a frequency at or above approximately 20 gigahertz (GHz). Other embodiments may be described or claimed.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: February 14, 2023
    Assignee: Intel Corporation
    Inventors: Henning Braunisch, Adel A. Elsherbini, Georgios Dogiamis, Telesphor Kamgaing, Richard Dischler, Johanna M. Swan, Victor J. Prokoff
  • Patent number: 11575749
    Abstract: Embodiments include a sensor node, an active sensor node, and a vehicle with a communication system that includes sensor nodes. The sensor node include a package substrate, a diplexer/combiner block on the package substrate, a transceiver communicatively coupled to the diplexer/combiner block, and a first mm-wave launcher coupled to the diplexer/combiner block. The sensor node may have a sensor communicatively coupled to the transceiver, the sensor is communicatively coupled to the transceiver by an electrical cable and located on the package substrate. The sensor node may include that the sensor operates at a frequency band for communicating with an electronic control unit (ECU) communicatively coupled to the sensor node. The sensor node may have a filter communicatively coupled to the diplexer/combiner block, the transceiver communicatively coupled to the filter, the filter substantially removes frequencies from RF signals other than the frequency band of the sensor.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: February 7, 2023
    Assignee: Intel Corporation
    Inventors: Georgios C. Dogiamis, Sasha N. Oster, Adel A. Elsherbini, Erich N. Ewy, Johanna M. Swan, Telesphor Kamgaing
  • Patent number: 11569428
    Abstract: One superconducting qubit device package disclosed herein includes a die having a first face and an opposing second face, and a package substrate having a first face and an opposing second face. The die includes a quantum device including a plurality of superconducting qubits and a plurality of resonators on the first face of the die, and a plurality of conductive pathways coupled between conductive contacts at the first face of the die and associated ones of the plurality of superconducting qubits or of the plurality of resonators. The second face of the package substrate also includes conductive contacts. The device package further includes first level interconnects disposed between the first face of the die and the second face of the package substrate, coupling the conductive contacts at the first face of the die with associated conductive contacts at the second face of the package substrate.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: January 31, 2023
    Inventors: Jeanette M. Roberts, Adel A. Elsherbini, Shawna Liff, Johanna M. Swan, Roman Caudillo, Zachary R. Yoscovits, Nicole K. Thomas, Ravi Pillarisetty, Hubert C. George, James S. Clarke
  • Patent number: 11562971
    Abstract: In various embodiments, disclosed herein are systems and methods directed to the fabrication of a coreless semiconductor package (e.g., a millimeter (mm)-wave antenna package) having an asymmetric build-up layer count that can be fabricated on both sides of a temporary substrate (e.g., a core). The asymmetric build-up layer count can reduce the overall layer count in the fabrication of the semiconductor package and can therefore contribute to fabrication cost reduction. In further embodiments, the semiconductor package (e.g., a millimeter (mm)-wave antenna packages) can further comprise dummification elements disposed near one or more antenna layers. Further, the dummification elements disposed near one or more antenna layers can reduce image current and thereby increasing the antenna gain and efficiency.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: January 24, 2023
    Assignee: Intel Corporation
    Inventors: Telesphor Kamgaing, Adel A. Elsherbini, Sasha N. Oster
  • Publication number: 20230018902
    Abstract: Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate, a first die coupled to the package substrate with first interconnects, and a second die coupled to the first die with second interconnects, wherein the second die is coupled to the package substrate with third interconnects, a communication network is at least partially included in the first die and at least partially included in the second die, and the communication network includes a communication pathway between the first die and the second die.
    Type: Application
    Filed: September 29, 2022
    Publication date: January 19, 2023
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Amr Elshazly, Arun Chandrasekhar, Shawna M. Liff, Johanna M. Swan
  • Publication number: 20220415743
    Abstract: Hybrid bonded 3D die stacks with improved thermal performance, related apparatuses, systems, and methods of fabrication are disclosed. Such hybrid bonded 3D die stacks include multiple levels of dies including a level of the 3D die stack with one or more integrated circuit dies and one or more thermal dies both directly bonded to another level of the 3D die stack.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Applicant: Intel Corporation
    Inventors: Feras Eid, Adel Elsherbini, Johanna Swan, Shawna Liff, Aleksandar Aleksov, Julien Sebot
  • Publication number: 20220413237
    Abstract: Apparatus and methods of manufacture are disclosed. In one example the apparatus includes a first substrate that has a first surface, a first optical waveguide that is at or near the first surface of the first substrate, a second substrate that has a second surface. The second substrate is coupled to the first substrate at an interface. The apparatus also has a photonic integrated circuit (PIC) with a portion at or near the second surface. The PIC is in alignment with and optically coupled to the first optical waveguide across the interface.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Inventors: Henning Braunisch, Adel Elsherbini
  • Publication number: 20220415555
    Abstract: Methods and apparatus for inductor and transformer semiconductor devices using hybrid bonding technology are disclosed. An example semiconductor device includes a first standoff substrate; a second standoff substrate adjacent the first standoff substrate; and a conductive layer adjacent at least one of the first standoff substrate or the second standoff substrate.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Inventors: Georgios Dogiamis, Qiang Yu, Adel Elsherbini, Kimin Jun
  • Publication number: 20220415847
    Abstract: Embodiments disclosed herein include multi-die modules and methods of assembling multi-die modules. In an embodiment, a multi-die module comprises a first die. In an embodiment the first die comprises a first pedestal, a plateau around the first pedestal, and a stub extending up from the plateau. In an embodiment, the multi-die module further comprises a second die. In an embodiment, the second die comprises a second pedestal, where the second pedestal is attached to the first pedestal.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: Feras EID, Johanna M. SWAN, Shawna M. LIFF, Adel A. ELSHERBINI, Aleksandar ALEKSOV
  • Publication number: 20220415853
    Abstract: A composite integrated circuit (IC) structure includes at least a first IC die in a stack with a second IC die. Each die has a device layer and metallization layers interconnected to transistors of the device layer and terminating at features. First features of the first IC die are primarily of a first composition with a first microstructure. Second features of the second IC die are primarily of a second composition or a second microstructure. A first one of the second features is in direct contact with one of the first features. The second composition has a thermal conductivity at least an order of magnitude lower than that of the first composition and first microstructure. The first composition may have a thermal conductivity at least 40 times that of the second composition or second microstructure.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Applicant: Intel Corporation
    Inventors: Aleksandar Aleksov, Johanna Swan, Shawna Liff, Feras Eid, Adel Elsherbini, Julien Sebot
  • Publication number: 20220415839
    Abstract: Embodiments disclosed herein include semiconductor dies with hybrid bonding layers and multi-die modules that are coupled together by hybrid bonding layers. In an embodiment, a semiconductor die comprises a die substrate, a pad layer over the die substrate, where the pad layer comprises first pads with a first dimension and a first pitch and second pads with a second dimension and a second pitch. In an embodiment, the semiconductor die further comprises a hybrid bonding layer over the pad layer. In an embodiment, the hybrid bonding layer comprises a dielectric layer, and an array of hybrid bonding pads in the dielectric layer, wherein the hybrid bonding pads comprise a third dimension and a third pitch.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: Aleksandar ALEKSOV, Feras EID, Johanna M. SWAN, Adel A. ELSHERBINI, Shawna M. LIFF
  • Publication number: 20220416393
    Abstract: Waveguide interconnects for semiconductor packages are disclosed. An example semiconductor package includes a first semiconductor die, a second semiconductor die, and a substrate positioned between the first and second dies. The substrate includes a waveguide interconnect to provide a communication channel to carry an electromagnetic signal. The waveguide interconnect is defined by a plurality of through substrate vias (TSVs). The TSVs in a pattern around the at least the portion of the substrate to define a boundary of the communication channel.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Inventors: Georgios Dogiamis, Johanna Swan, Adel Elsherbini, Shawna Liff, Beomseok Choi, Qiang Yu