Patents by Inventor Anthony I. Chou

Anthony I. Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170179257
    Abstract: The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming a partially depleted semiconductor-on-insulator (SOI) junction isolation structure using a nonuniform trench shape formed by reactive ion etching (RIE) and crystallographic wet etching. The nonuniform trench shape may reduce back channel leakage by providing an effective channel directly below a gate stack having a width that is less than a width of an effective back channel directly above the isolation layer.
    Type: Application
    Filed: March 9, 2017
    Publication date: June 22, 2017
    Inventors: Anthony I. Chou, Judson R. Holt, Arvind Kumar, Henry K. Utomo
  • Publication number: 20170178913
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Application
    Filed: March 6, 2017
    Publication date: June 22, 2017
    Inventors: Anthony I. CHOU, Arvind KUMAR, Chung-Hsun LIN, Shreesh NARASIMHA, Claude ORTOLLAND, Jonathan T. SHAW
  • Patent number: 9685379
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: June 20, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony I. Chou, Arvind Kumar, Chung-Hsun Lin, Shreesh Narasimha, Claude Ortolland, Jonathan T. Shaw
  • Patent number: 9659961
    Abstract: A metal-oxide-semiconductor field-effect transistor (MOSFET) with integrated passive structures and methods of manufacturing the same is disclosed. The method includes forming a stacked structure in an active region and at least one shallow trench isolation (STI) structure adjacent to the stacked structure. The method further includes forming a semiconductor layer directly in contact with the at least one STI structure and the stacked structure. The method further includes patterning the semiconductor layer and the stacked structure to form an active device in the active region and a passive structure of the semiconductor layer directly on the at least one STI structure.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: May 23, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony I. Chou, Arvind Kumar, Renee T. Mo, Shreesh Narasimha
  • Publication number: 20170125542
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Application
    Filed: January 13, 2017
    Publication date: May 4, 2017
    Inventors: Anthony I. CHOU, Arvind KUMAR, Chung-Hsun LIN, Shreesh NARASIMHA, Claude ORTOLLAND, Jonathan T. SHAW
  • Patent number: 9627480
    Abstract: The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming a partially depleted semiconductor-on-insulator (SOI) junction isolation structure using a nonuniform trench shape formed by reactive ion etching (RIE) and crystallographic wet etching. The nonuniform trench shape may reduce back channel leakage by providing an effective channel directly below a gate stack having a width that is less than a width of an effective back channel directly above the isolation layer.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: April 18, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Anthony I. Chou, Judson R. Holt, Arvind Kumar, Henry K. Utomo
  • Publication number: 20170076991
    Abstract: An aspect of the disclosure provides for an asymmetric semiconductor device. The asymmetric semiconductor device may comprise: a substrate; and a fin-shaped field effect transistor (FINFET) disposed on the substrate, the FINFET including: a set of fins disposed proximate a gate; a first epitaxial region disposed on a source region on the set of fins, the first epitaxial region having a first height; and a second epitaxial region disposed on a drain region on the set of fins, the second epitaxial region having a second height, wherein the first height is distinct from the second height.
    Type: Application
    Filed: September 14, 2015
    Publication date: March 16, 2017
    Inventors: Anthony I. Chou, Judson R. Holt, Arvind Kumar, Henry K. Utomo
  • Patent number: 9577061
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: February 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony I. Chou, Arvind Kumar, Chung-Hsun Lin, Shreesh Narasimha, Claude Ortolland, Jonathan T. Shaw
  • Patent number: 9570354
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: February 14, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony I. Chou, Arvind Kumar, Chung-Hsun Lin, Shreesh Narasimha, Claude Ortolland, Jonathan T. Shaw
  • Patent number: 9559010
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: January 31, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony I. Chou, Arvind Kumar, Chung-Hsun Lin, Shreesh Narasimha, Claude Ortolland, Jonathan T. Shaw
  • Patent number: 9543213
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: January 10, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony I. Chou, Arvind Kumar, Chung-Hsun Lin, Shreesh Narasimha, Claude Ortolland, Jonathan T. Shaw
  • Publication number: 20160379999
    Abstract: Methods and structures for capacitively isolating a heat shield from a handle wafer of a silicon-on-insulator substrate. A contact plug is located in a trench extending through a trench isolation region in a device layer of the silicon-on-insulator substrate and at least partially through a buried insulator layer of the silicon-on-insulator substrate. The heat shield is located in an interconnect structure, which also includes a wire coupling the heat shield with the contact plug. An isolation structure is positioned between the contact plug and a portion of the handle wafer. The isolation structure provides the capacitive isolation.
    Type: Application
    Filed: June 24, 2015
    Publication date: December 29, 2016
    Inventors: Anthony I. Chou, Sungjae Lee, Joseph M. Lukaitis, Robert R. Robison
  • Patent number: 9530798
    Abstract: Methods and structures for capacitively isolating a heat shield from a handle wafer of a silicon-on-insulator substrate. A contact plug is located in a trench extending through a trench isolation region in a device layer of the silicon-on-insulator substrate and at least partially through a buried insulator layer of the silicon-on-insulator substrate. The heat shield is located in an interconnect structure, which also includes a wire coupling the heat shield with the contact plug. An isolation structure is positioned between the contact plug and a portion of the handle wafer. The isolation structure provides the capacitive isolation.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: December 27, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Anthony I. Chou, Sungjae Lee, Joseph M. Lukaitis, Robert R. Robison
  • Patent number: 9508826
    Abstract: After formation of a gate cavity straddling at least one semiconductor material portion, a gate dielectric layer and at least one work function material layer is formed over the gate dielectric layer. The at least one work function material layer and the gate dielectric layer are patterned such that remaining portions of the at least one work function material layer are present only in proximity to the at least one semiconductor material portion. A conductive material having a greater conductivity than the at least one work function material layer is deposited in remaining portions of the gate cavity. The conductive material portion within a replacement gate structure has the full width of the replacement gate structure in regions from which the at least one work function material layer and the gate dielectric layer are removed.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: November 29, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Anthony I. Chou, Arvind Kumar, Sungjae Lee
  • Patent number: 9484246
    Abstract: A buried conductive layer is formed underneath a buried insulator layer of a semiconductor-on-insulator (SOI) substrate. A deep isolation trench laterally surrounding a portion of the buried conductive layer is formed, and is filled with at least a dielectric liner to form a deep capacitor trench isolation structure. Contact via structures are formed through the buried insulator layer and a top semiconductor layer and onto the portion of the buried conductive layer, which constitutes a buried conductive conduit. The deep capacitor trench isolation structure may be formed concurrently with at least one deep trench capacitor. A patterned portion of the top semiconductor layer may be employed as an additional conductive conduit for signal transmission. Further, the deep capacitor trench isolation structure may include a conductive portion, which can be electrically biased to control the impedance of the signal path including the buried conductive conduit.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: November 1, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Anthony I. Chou, Arvind Kumar, Sungjae Lee, Richard A. Wachnik
  • Publication number: 20160307918
    Abstract: A metal-oxide-semiconductor field-effect transistor (MOSFET) with integrated passive structures and methods of manufacturing the same is disclosed. The method includes forming a stacked structure in an active region and at least one shallow trench isolation (STI) structure adjacent to the stacked structure. The method further includes forming a semiconductor layer directly in contact with the at least one STI structure and the stacked structure. The method further includes patterning the semiconductor layer and the stacked structure to form an active device in the active region and a passive structure of the semiconductor layer directly on the at least one STI structure.
    Type: Application
    Filed: June 29, 2016
    Publication date: October 20, 2016
    Inventors: Anthony I. Chou, Arvind Kumar, Renee T. Mo, Shreesh Narasimha
  • Publication number: 20160307806
    Abstract: A metal-oxide-semiconductor field-effect transistor (MOSFET) with integrated passive structures and methods of manufacturing the same is disclosed. The method includes forming a stacked structure in an active region and at least one shallow trench isolation (STI) structure adjacent to the stacked structure. The method further includes forming a semiconductor layer directly in contact with the at least one STI structure and the stacked structure. The method further includes patterning the semiconductor layer and the stacked structure to form an active device in the active region and a passive structure of the semiconductor layer directly on the at least one STI structure.
    Type: Application
    Filed: June 29, 2016
    Publication date: October 20, 2016
    Inventors: Anthony I. Chou, Arvind Kumar, Renee T. Mo, Shreesh Narasimha
  • Patent number: 9450072
    Abstract: After formation of a gate cavity straddling at least one semiconductor material portion, a gate dielectric layer and at least one work function material layer is formed over the gate dielectric layer. The at least one work function material layer and the gate dielectric layer are patterned such that remaining portions of the at least one work function material layer are present only in proximity to the at least one semiconductor material portion. A conductive material having a greater conductivity than the at least one work function material layer is deposited in remaining portions of the gate cavity. The conductive material portion within a replacement gate structure has the full width of the replacement gate structure in regions from which the at least one work function material layer and the gate dielectric layer are removed.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: September 20, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Anthony I. Chou, Arvind Kumar, Sungjae Lee
  • Publication number: 20160268390
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Application
    Filed: May 19, 2016
    Publication date: September 15, 2016
    Inventors: Anthony I. CHOU, Arvind KUMAR, Chung-Hsun LIN, Shreesh NARASIMHA, Claude ORTOLLAND, Jonathan T. SHAW
  • Publication number: 20160260618
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Application
    Filed: May 19, 2016
    Publication date: September 8, 2016
    Inventors: Anthony I. CHOU, Arvind KUMAR, Chung-Hsun LIN, Shreesh NARASIMHA, Claude ORTOLLAND, Jonathan T. SHAW