Patents by Inventor Anthony I. Chou

Anthony I. Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160260638
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Application
    Filed: May 19, 2016
    Publication date: September 8, 2016
    Inventors: Anthony I. CHOU, Arvind KUMAR, Chung-Hsun LIN, Shreesh NARASIMHA, Claude ORTOLLAND, Jonathan T. SHAW
  • Patent number: 9425079
    Abstract: A metal-oxide-semiconductor field-effect transistor (MOSFET) with integrated passive structures and methods of manufacturing the same is disclosed. The method includes forming a stacked structure in an active region and at least one shallow trench isolation (STI) structure adjacent to the stacked structure. The method further includes forming a semiconductor layer directly in contact with the at least one STI structure and the stacked structure. The method further includes patterning the semiconductor layer and the stacked structure to form an active device in the active region and a passive structure of the semiconductor layer directly on the at least one STI structure.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: August 23, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony I. Chou, Arvind Kumar, Renee T. Mo, Shreesh Narasimha
  • Patent number: 9412759
    Abstract: A gate contact with reduced contact resistance is provided by increasing contact area between the gate contact and a gate conductive portion of a gate structure. The gate contact forms a direct contact with a topmost surface and at least portions of outermost sidewalls of a portion of the gate conductive portion, thus increasing the contact area between the gate contact and the gate structure. The gate contact area of the present application can be further increased by completely surrounding a portion of the gate conductive portion of the gate structure with the gate contact.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: August 9, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Anthony I. Chou, Arvind Kumar, Sungjae Lee
  • Patent number: 9412667
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: August 9, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony I. Chou, Arvind Kumar, Chung-Hsun Lin, Shreesh Narasimha, Claude Ortolland, Jonathan T. Shaw
  • Patent number: 9400511
    Abstract: Embodiments include methods, computer systems and computer program products for controlling resistance value of a resistor in a circuit. Aspects include: retrieving, via a controller, a set of parameters of the resistor from a non-volatile memory in the circuit, detecting, via the controller, an operating temperature of the resistor during circuit operation in field using a temperature sensor, generating, by the controller, a temperature difference between the operating temperature detected and a target temperature at which the resistor has a target resistance value, producing, by the controller, a control signal responsive to the temperature difference generated, and transmitting the control signal to a temperature regulator placed adjacent to the resistor to adjust the resistance value of the resistor. The resistance value of the resistor varies in response to temperature changes around the resistor according to a temperature coefficient of the resistance of the resistor.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: July 26, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony I. Chou, Arvind Kumar, Sungjae Lee
  • Publication number: 20160204214
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Anthony I. CHOU, Arvind KUMAR, Chung-Hsun LIN, Shreesh NARASIMHA, Claude ORTOLLAND, Jonathan T. SHAW
  • Publication number: 20160203987
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Anthony I. CHOU, Arvind KUMAR, Chung-Hsun LIN, Shreesh NARASIMHA, Claude ORTOLLAND, Jonathan T. SHAW
  • Publication number: 20160203985
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Anthony I. CHOU, Arvind KUMAR, Chung-Hsun LIN, Shreesh NARASIMHA, Claude ORTOLLAND, Jonathan T. SHAW
  • Publication number: 20160203986
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Anthony I. CHOU, Arvind KUMAR, Chung-Hsun LIN, Shreesh NARASIMHA, Claude ORTOLLAND, Jonathan T. SHAW
  • Publication number: 20160204209
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Anthony I. CHOU, Arvind KUMAR, Chung-Hsun LIN, Shreesh NARASIMHA, Claude ORTOLLAND, Jonathan T. SHAW
  • Publication number: 20160172378
    Abstract: A gate contact with reduced contact resistance is provided by increasing contact area between the gate contact and a gate conductive portion of a gate structure. The gate contact forms a direct contact with a topmost surface and at least portions of outermost sidewalls of a portion of the gate conductive portion, thus increasing the contact area between the gate contact and the gate structure. The gate contact area of the present application can be further increased by completely surrounding a portion of the gate conductive portion of the gate structure with the gate contact.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Anthony I. Chou, Arvind Kumar, Sungjae Lee
  • Publication number: 20160149013
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 26, 2016
    Inventors: Anthony I. CHOU, Arvind KUMAR, Chung-Hsun LIN, Shreesh NARASIMHA, Claude ORTOLLAND, Jonathan T. SHAW
  • Publication number: 20160013181
    Abstract: A metal-oxide-semiconductor field-effect transistor (MOSFET) with integrated passive structures and methods of manufacturing the same is disclosed. The method includes forming a stacked structure in an active region and at least one shallow trench isolation (STI) structure adjacent to the stacked structure. The method further includes forming a semiconductor layer directly in contact with the at least one STI structure and the stacked structure. The method further includes patterning the semiconductor layer and the stacked structure to form an active device in the active region and a passive structure of the semiconductor layer directly on the at least one STI structure.
    Type: Application
    Filed: September 24, 2015
    Publication date: January 14, 2016
    Inventors: Anthony I. Chou, Arvind Kumar, Renee T. Mo, Shreesh Narasimha
  • Publication number: 20160013093
    Abstract: A metal-oxide-semiconductor field-effect transistor (MOSFET) with integrated passive structures and methods of manufacturing the same is disclosed. The method includes forming a stacked structure in an active region and at least one shallow trench isolation (STI) structure adjacent to the stacked structure. The method further includes forming a semiconductor layer directly in contact with the at least one STI structure and the stacked structure. The method further includes patterning the semiconductor layer and the stacked structure to form an active device in the active region and a passive structure of the semiconductor layer directly on the at least one STI structure.
    Type: Application
    Filed: September 24, 2015
    Publication date: January 14, 2016
    Inventors: Anthony I. Chou, Arvind Kumar, Renee T. Mo, Shreesh Narasimha
  • Publication number: 20150380488
    Abstract: The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming a partially depleted semiconductor-on-insulator (SOI) junction isolation structure using a nonuniform trench shape formed by reactive ion etching (RIE) and crystallographic wet etching. The nonuniform trench shape may reduce back channel leakage by providing an effective channel directly below a gate stack having a width that is less than a width of an effective back channel directly above the isolation layer.
    Type: Application
    Filed: June 26, 2014
    Publication date: December 31, 2015
    Inventors: Anthony I. Chou, Judson R. Holt, Arvind Kumar, Henry K. Utomo
  • Publication number: 20150371893
    Abstract: A buried conductive layer is formed underneath a buried insulator layer of a semiconductor-on-insulator (SOI) substrate. A deep isolation trench laterally surrounding a portion of the buried conductive layer is formed, and is filled with at least a dielectric liner to form a deep capacitor trench isolation structure. Contact via structures are formed through the buried insulator layer and a top semiconductor layer and onto the portion of the buried conductive layer, which constitutes a buried conductive conduit. The deep capacitor trench isolation structure may be formed concurrently with at least one deep trench capacitor. A patterned portion of the top semiconductor layer may be employed as an additional conductive conduit for signal transmission. Further, the deep capacitor trench isolation structure may include a conductive portion, which can be electrically biased to control the impedance of the signal path including the buried conductive conduit.
    Type: Application
    Filed: June 18, 2014
    Publication date: December 24, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony I. Chou, Arvind Kumar, Sungjae Lee, Richard A. Wachnik
  • Publication number: 20150372109
    Abstract: After formation of a gate cavity straddling at least one semiconductor material portion, a gate dielectric layer and at least one work function material layer is formed over the gate dielectric layer. The at least one work function material layer and the gate dielectric layer are patterned such that remaining portions of the at least one work function material layer are present only in proximity to the at least one semiconductor material portion. A conductive material having a greater conductivity than the at least one work function material layer is deposited in remaining portions of the gate cavity. The conductive material portion within a replacement gate structure has the full width of the replacement gate structure in regions from which the at least one work function material layer and the gate dielectric layer are removed.
    Type: Application
    Filed: October 21, 2014
    Publication date: December 24, 2015
    Inventors: Anthony I. Chou, Arvind Kumar, Sungjae Lee
  • Publication number: 20150372112
    Abstract: After formation of a gate cavity straddling at least one semiconductor material portion, a gate dielectric layer and at least one work function material layer is formed over the gate dielectric layer. The at least one work function material layer and the gate dielectric layer are patterned such that remaining portions of the at least one work function material layer are present only in proximity to the at least one semiconductor material portion. A conductive material having a greater conductivity than the at least one work function material layer is deposited in remaining portions of the gate cavity. The conductive material portion within a replacement gate structure has the full width of the replacement gate structure in regions from which the at least one work function material layer and the gate dielectric layer are removed.
    Type: Application
    Filed: June 18, 2014
    Publication date: December 24, 2015
    Applicant: International Business Machines Corporation
    Inventors: Anthony I. Chou, Arvind Kumar, Sungjae Lee
  • Patent number: 9219059
    Abstract: A metal-oxide-semiconductor field-effect transistor (MOSFET) with integrated passive structures and methods of manufacturing the same is disclosed. The method includes forming a stacked structure in an active region and at least one shallow trench isolation (STI) structure adjacent to the stacked structure. The method further includes forming a semiconductor layer directly in contact with the at least one STI structure and the stacked structure. The method further includes patterning the semiconductor layer and the stacked structure to form an active device in the active region and a passive structure of the semiconductor layer directly on the at least one STI structure.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: December 22, 2015
    Assignee: International Business Machines Corporation
    Inventors: Anthony I. Chou, Arvind Kumar, Renee T. Mo, Shreesh Narasimha
  • Patent number: 9190418
    Abstract: After forming source/drain trenches within a top semiconductor layer of a semiconductor-on-insulator (SOI) substrate, portions of the trenches adjacent channel regions of a semiconductor structure are covered either by sacrificial spacers formed on sidewalls of the trenches or by photoresist layer portions. The sacrificial spacers or photoresist layer portions shield portions of the top semiconductor layer underneath the trenches from subsequent ion implantation for forming junction butting. The ion implantation regions thus are confined only in un-shielded, sublayered portions of the top semiconductor layer that are away from the channel regions of the semiconductor structure. The width of the ion implantation regions are controlled such that the implanted dopants do not diffuse into the channel regions during subsequent thermal cycles so as to suppress the short channel effects.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: November 17, 2015
    Assignee: GLOBALFOUNDRIES U.S. 2 LLC
    Inventors: Anthony I. Chou, Murshed M. Chowdhury, Arvind Kumar, Robert R. Robison