Patents by Inventor Byoung-lyong Choi

Byoung-lyong Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100072890
    Abstract: An inorganic electroluminescent device includes; a conductive layer, a fluorescent material layer disposed on a surface of the conductive layer, a dielectric material layer disposed on a surface of the conductive layer substantially opposite to the surface on which the fluorescent material layer is disposed, a first electrode disposed on the fluorescent layer, and a second electrode disposed on the dielectric material layer.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 25, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Min-jong BAE, Shang-hyeun PARK, Byoung-lyong CHOI
  • Publication number: 20100065809
    Abstract: Disclosed herein is a nanowire including silicon rich oxide and a method for producing the same. The nanowire exhibits excellent electrically conducting properties and optical characteristics, and therefore is effectively used in a variety of applications including, for example, solar cells, sensors, photodetectors, light emitting diodes, laser diodes, EL devices, PL devices, CL devices, FETs, CTFs, surface plasmon waveguides, MOS capacitors and the like.
    Type: Application
    Filed: January 8, 2009
    Publication date: March 18, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun Kyung LEE, Byoung Lyong CHOI, Gyeong Su PARK, Jai Yong HAN
  • Publication number: 20100051583
    Abstract: Disclosed herein is a method for preparing a porous material using nanostructures. The method comprises the steps of producing nanostructures using a porous template, dispersing the nanostructures in a source or precursor material for the porous material, aligning the nanostructures in a particular direction, and removing the nanostructures by etching. According to the method, the size, shape, orientation and regularity of pores of the porous material can be easily controlled, and the preparation of the porous material is simplified, leading to a reduction in preparation costs. Further disclosed is a porous material prepared by the method.
    Type: Application
    Filed: May 31, 2006
    Publication date: March 4, 2010
    Inventors: Kyung Sang Cho, Byoung Lyong Choi, Eun Kyung Lee, Soon Jae Kwon, Jae Ho Lee
  • Patent number: 7662300
    Abstract: Disclosed herein is a method for preparing a porous material using nanostructures. The method comprises the steps of producing nanostructures using a porous template, dispersing the nanostructures in a source or precursor material for the porous material, aligning the nanostructures in a particular direction, and removing the nanostructures by etching. According to the method, the size, shape, orientation and regularity of pores of the porous material can be easily controlled, and the preparation of the porous material is simplified, leading to a reduction in preparation costs. Further disclosed is a porous material prepared by the method.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: February 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung Sang Cho, Byoung Lyong Choi, Eun Kyung Lee, Soon Jae Kwon, Jae Ho Lee
  • Patent number: 7649192
    Abstract: Provided are nano wires and a method of manufacturing the same. The method includes forming microgrooves having a plurality of microcavities, the microgrooves forming a regular pattern on a surface of a silicon substrate; forming a metal layer on the silicon substrate by depositing a material which acts as a catalyst to form nano wires on the silicon substrate; agglomerating the metal layer within the microgrooves on the surface of the silicon substrate by heating the metal layer to form catalysts; and growing the nano wires between the catalysts and the silicon substrate using a thermal process.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: January 19, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoung-lyong Choi, Eun-kyung Lee
  • Patent number: 7638345
    Abstract: A method of manufacturing silicon nanowires is characterized in that silicon nanowires are formed and grown through a solid-liquid-solid process or a vapor-liquid-solid process using a porous glass template having nanopores doped with erbium or an erbium precursor. In addition, a device including silicon nanowires formed using the above exemplary method according to the present invention can be effectively applied to various devices, for example, electronic devices such as field effect transistors, sensors, photodetectors, light emitting diodes, laser diodes, etc.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: December 29, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Kyung Lee, Byoung Lyong Choi, Soon Jae Kwon, Kyung Sang Cho, Jae Ho Lee
  • Patent number: 7625812
    Abstract: A method of manufacturing silicon nano wires including forming microgrooves on a surface of a silicon substrate, forming a first doping layer doped with a first dopant on the silicon substrate and forming a second doping layer doped with a second dopant between the first doping layer and a surface of the silicon substrate, forming a metal layer on the silicon substrate, forming catalysts by heating the metal layer within the microgrooves of the silicon substrate and growing the nano wires between the catalysts and the silicon substrate using a thermal process.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: December 1, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoung-lyong Choi, Wan-jun Park, Eun-kyung Lee, Jao-woong Hyun
  • Patent number: 7608902
    Abstract: A nanowire composite and a method of preparing the nanowire composite comprise a template having a plurality of hollow channels, nanowires formed within the respective channels of the template, and a functional element formed by removing a portion of the template so that one or more of the nanowires formed within the portion of the template are exposed. Since the nanowire composite can be prepared in a simple manner at low costs and can be miniaturized, the nanowire composite finds application in resonators and a variety of sensors.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: October 27, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Soon Jae Kwon, Byoung Lyong Choi, Eun Kyung Lee, Kyung Sang Cho, In Taek Han, Jae Ho Lee, Seong Jae Choi
  • Publication number: 20090152527
    Abstract: Disclosed herein is a method for producing catalyst-free single crystal silicon nanowires. According to the method, nanowires can be produced in a simple and economical manner without the use of any metal catalyst. In addition, impurities contained in a metal catalyst can be prevented from being introduced into the nanowires, contributing to an improvement in the electrical and optical properties of the nanowires. Also disclosed herein are nanowires produced by the method and nanodevice comprising the nanowires.
    Type: Application
    Filed: May 28, 2008
    Publication date: June 18, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun Kyung LEE, Dongmok WHANG, Byoung Lyong CHOI, Byung Sung KIM
  • Patent number: 7537956
    Abstract: A method of manufacturing a silicon optoelectronic device, a silicon optoelectronic device manufactured by the method and an image input and/or output apparatus having the silicon optoelectronic device are provided.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: May 26, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-jae Song, Byoung-lyong Choi
  • Publication number: 20090081429
    Abstract: Disclosed are an optical film having a graded refractive index and a method of manufacturing the same. The optical film includes one or more antireflection films composed of a mesoporous material having a plurality of pores of a uniform size, and the pores of the mesoporous material are filled with air or a filler having a refractive index different from that of the mesoporous material, and thus the volume ratio of mesoporous material to filler in the pores thereof is controlled, thereby obtaining a desired magnitude of effective refractive index and ensuring a refractive index distribution in which the refractive indexes sequentially change, resulting in high antireflection performance. The method of manufacturing the optical film may be conducted using a nanowire growing technique, thus making it easy to realize mass production.
    Type: Application
    Filed: March 5, 2008
    Publication date: March 26, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun Kyung Lee, Jae Ho You, Byoung Lyong Choi, Seung Ho Nam
  • Publication number: 20090057653
    Abstract: Methods for the site-selective growth of horizontal nanowires are provided. According to the methods, horizontal nanowires having a predetermined length and diameter can be grown site-selectively at desired sites in a direction parallel to a substrate to fabricate a device with high degree of integration. Further provided are nanowires grown by the methods and nanodevices comprising the nanowires.
    Type: Application
    Filed: March 19, 2008
    Publication date: March 5, 2009
    Applicants: SAMSUNG ELECTRONICS CO., LTD., SEOUL NATIONAL UNIVERSITY INDUSTRY FOUNDATION
    Inventors: Eun Kyung LEE, Byoung Lyong CHOI, Young KUK, Je Hyuk CHOI, Hun Huy JUNG
  • Publication number: 20090053126
    Abstract: A method for the mass production of nanostructures is provided. The method comprises introducing metal catalyst nanoparticles into a plurality of uniformly sized pores of mesoporous templates, distributing the templates containing the metal catalyst nanoparticles in a three-dimensional manner, and introducing a nanowire source into the pores of the templates to grow the nanowire source into nanowires along the length of the pores. Further provided are nanostructures produced by the method. The nanostructures have a uniform thickness. In addition, the nanostructures may have various shapes and can be controllably doped. The nanostructures can be applied to a variety of devices, including electronic devices, e.g., field effect transistors (FETs) and light-emitting diodes (LEDs), photodetectors, nano-analyzers, and high-sensitivity signal detectors for various applications, e.g., cancer diagnosis.
    Type: Application
    Filed: October 31, 2007
    Publication date: February 26, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun Kyung LEE, Byoung Lyong CHOI, Dong Mock HWANG
  • Publication number: 20090045720
    Abstract: Disclosed herein is a method for producing nanowires, which features the use of a porous glass template in combination with a solid-liquid-solid or vapor-liquid-solid process for growing nanowires which are highly straight and have nanoparticles precisely arranged therein. The nanowires can be grown into composite structures of superlattices and hybrids by modulating the composition of the materials provided thereto. Also disclosed is the use of the nanowires in multi-probes, field emission tips, and devices.
    Type: Application
    Filed: June 8, 2006
    Publication date: February 19, 2009
    Inventors: Eun Kyung Lee, Byoung Lyong Choi, Jong Min Kim, Soon Jae Kwon, Kyung Sang Cho, Jae Ho Lee
  • Publication number: 20090039764
    Abstract: Disclosed herein a quantum dot light-emitting device which has an inorganic electron transport layer. According to the device, an electron transport layer formed by an inorganic materials, thereby providing a high electron transport velocity or electron density and improving a light emitting efficiency. Further, interlayer resistance between electrode and organic-electron transporting layer or between quantum dot light-emitting layer and organic-electron transporting layer is prohibit, thus increasing a light emitting efficiency of diode.
    Type: Application
    Filed: September 16, 2004
    Publication date: February 12, 2009
    Inventors: Kyung Sang Cho, Byoung Lyong Choi, Byung Ki Kim, Soon Jae Kwon
  • Publication number: 20090008664
    Abstract: A nanowire light emitting device is provided. The nanowire light emitting device includes a substrate, a first conductive layer formed on the substrate, a plurality of nanowires vertically formed on the first conductive layer, each nanowire comprising a p-doped portion and an n-doped portion, a light emitting layer between the p-doped portion and the n-doped portion, a second conductive layer formed on the nanowires, and an insulating polymer in which a light emitting material is embedded, filling a space between the nanowires. The color of light emitted from the light emitting layer varies according to the light emitting material.
    Type: Application
    Filed: February 29, 2008
    Publication date: January 8, 2009
    Inventors: Young-gu Jin, Sung-hoon Lee, Hyo-sug Lee, Byoung-lyong Choi, Jong-seob Kim
  • Publication number: 20090009057
    Abstract: Disclosed herein is a quantum dot optical device, including: a substrate; a hole injection electrode; a hole transport layer; a quantum dot luminescent layer; an electron transport layer; and an electron injection electrode, wherein a light-emitting surface of the device has a periodical projection structure.
    Type: Application
    Filed: February 15, 2008
    Publication date: January 8, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun Kyung LEE, Jong Min KIM, Byoung Lyong CHOI, Kyung Sang CHO
  • Publication number: 20090008628
    Abstract: Disclosed is a light-emitting device using a transistor structure, including a substrate, a first gate electrode, a first insulating layer, a source electrode, a drain electrode, and a light-emitting layer formed between the source electrode and the drain electrode in a direction parallel to these electrodes. In the light-emitting device using the transistor structure, it is possible to adjust the mobility of electrons or holes and to selectively set a light-emitting region through the control of the magnitude of voltage applied to the gate electrode, thus increasing the lifespan of the light-emitting device, facilitating the manufacturing process thereof, and realizing light-emitting or light-receiving properties having high efficiency and high purity.
    Type: Application
    Filed: February 14, 2008
    Publication date: January 8, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byoung Lyong CHOI, Kyung Sang CHO, Eun Kyung LEE, O Gweon SEO
  • Publication number: 20080309234
    Abstract: An alternating current driving type quantum dot electroluminescent device includes; a first electrode, a second electrode, a quantum dot light-emitting layer disposed between the first electrode and the second electrode, and at least one layer selected from the group consisting of a tunneling layer, a bipolar layer, a dielectric layer, an insulating layer, and a combination of layers thereof, disposed between at least one of the first electrode and the quantum dot light-emitting layer, and the second electrode and the quantum dot light-emitting layer.
    Type: Application
    Filed: October 31, 2007
    Publication date: December 18, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: KYUNG SANG CHO, BYOUNG LYONG CHOI, SANG JUN CHOI, EUN KYUNG LEE
  • Patent number: 7462982
    Abstract: A flat panel display is provided. The flat panel display includes a silicon light-emitting device panel having a two-dimensional array of silicon light-emitting devices formed on an n- or p-type silicon-based substrate, and a fluorescent layer formed on the front surface of the silicon light-emitting device panel and emitting visible light after being excited by light emitted from the silicon light-emitting devices, wherein each of the silicon light-emitting devices comprises: a doping region formed on a surface of the substrate in such a way that the substrate is doped with a predetermined dopant of the opposite type to the substrate to a depth so that recombination of electron-hole pairs by quantum confinement effect at a p-n junction leads to light emission; and electrodes patterned on the substrate to allow the silicon light-emitting devices to emit light according to an image signal.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: December 9, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoung-lyong Choi, Eun-kyung Lee, Jun-young Kim