Patents by Inventor Chun Wing Yeung

Chun Wing Yeung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200295175
    Abstract: Semiconductor device structures and techniques are provided for measuring contact resistance. A semiconductor device is disclosed including a first source/drain region and a contact disposed on the first source/drain region and configured to supply energy to the semiconductor device. A fin extends between the first source/drain region and a second source/drain region of the semiconductor device. A first contact material layer is disposed on the second source/drain region and a first active drain contact is disposed on the first contact material layer. A first sensor drain contact is also disposed on the first contact material layer. A second contact material layer is disposed on the second source/drain region and a second active drain contact is disposed on the second contact material layer. A third contact material layer is disposed on the second source/drain region and a second sensor drain contact is disposed on the third contact material layer.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 17, 2020
    Inventors: Zuoguang Liu, Richard Glen Southwick, III, Xin Miao, Chun Wing Yeung
  • Publication number: 20200295132
    Abstract: A semiconductor device and method for forming the same. The device comprises at least a dielectric layer, a two-dimensional (2D) material layer, a gate structure, and source/drain contacts. The 2D material layer contacts the dielectric layer. The gate structure contacts the 2D material layer. The source/drain contacts are disposed above the 2D material layer and contact the gate structure. The method includes forming a structure including at least a handle wafer, a 2D material layer, a gate structure in contact with the 2D material layer, an insulating layer, and a sacrificial layer. A portion of the sacrificial layer is etched. An inter-layer dielectric is formed in contact with the insulating layer and sidewalls of the sacrificial layer. The sacrificial layer and a portion of the insulating layer are removed. Source and drain contacts are formed in contact with the portion of the 2D material layer.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 17, 2020
    Inventors: Chen ZHANG, Peng XU, Chun Wing YEUNG
  • Patent number: 10756205
    Abstract: A method of fabricating a semiconductor device includes forming a back gate dielectric. A layer of two-dimensional material is transferred onto a surface of the back gate dielectric. A top gate dielectric is deposited and a top gate formed thereon. A first set of spacers is formed around the top gate and exposed portions of the top gate dielectric removed and a second set of spacers formed around the top gate. Exposed portions of the two-dimensional material are removed. A directional etch down of the substrate and a lateral isotropic etch of the substrate are performed and open spaces filled with a dielectric material surrounding the top gate, the back gate dielectric, and the substrate. The dielectric material is etched from the top gate and the back gate dielectric, the second set of spacers removed, and source and drain contact metal deposited. The source and drain contacts the layer.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Peng Xu, Chun Wing Yeung, Chen Zhang
  • Publication number: 20200259009
    Abstract: A method of fabricating a semiconductor device includes forming a back gate dielectric. A layer of two-dimensional material is transferred onto a surface of the back gate dielectric. A top gate dielectric is deposited and a top gate formed thereon. A first set of spacers is formed around the top gate and exposed portions of the top gate dielectric removed and a second set of spacers formed around the top gate. Exposed portions of the two-dimensional material are removed. A directional etch down of the substrate and a lateral isotropic etch of the substrate are performed and open spaces filled with a dielectric material surrounding the top gate, the back gate dielectric, and the substrate. The dielectric material is etched from the top gate and the back gate dielectric, the second set of spacers removed, and source and drain contact metal deposited. The source and drain contacts the layer.
    Type: Application
    Filed: February 13, 2019
    Publication date: August 13, 2020
    Inventors: Peng Xu, Chun Wing Yeung, Chen Zhang
  • Patent number: 10741681
    Abstract: The present invention provides a method and a structure of increasing source and drain contact edge width in a two-dimensional material field effect transistor. The method includes patterning a two-dimensional material over an insulating substrate; depositing a gate dielectric over the two-dimensional material; depositing a top gate over the gate dielectric, wherein the top gate has a hard mask thereon; forming a sidewall spacer around the top gate; depositing an interlayer dielectric oxide over the sidewall spacer and the hard mask; removing the interlayer dielectric oxide adjacent to the sidewall spacer to form an open contact trench; depositing a copolymer coating in the contact trench region; annealing the copolymer to induce a directed self-assembly; performing a two-dimensional material etch over the two-dimensional material; removing the unetched copolymer without etching the gate dielectric; and etching the exposed gate in the source and the drain region to form a metal contact layer.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: August 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chi-Chun Liu, Chun Wing Yeung, Chen Zhang
  • Publication number: 20200161452
    Abstract: A method of forming a vertical transport fin field effect transistor is provided. The method includes forming a doped layer on a substrate, and forming a multilayer fin on the doped layer, where the multilayer fin includes a lower trim layer portion, an upper trim layer portion, and a fin channel portion between the upper and lower trim layer portions. A portion of the lower trim layer portion is removed to form a lower trim layer post, and a portion of the upper trim layer portion is removed to form an upper trim layer post. An upper recess filler is formed adjacent to the upper trim layer post, and a lower recess filler is formed adjacent to the lower trim layer post. A portion of the fin channel portion is removed to form a fin channel post between the upper trim layer post and lower trim layer post.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 21, 2020
    Inventors: Tenko Yamashita, Chun Wing Yeung, Chen Zhang
  • Patent number: 10658299
    Abstract: A method of forming a semiconductor structure comprises forming a plurality of fins disposed over a top surface of a substrate and forming one or more vertical transport field-effect transistors (VTFETs) from the plurality of fins using a replacement metal gate (RMG) process. A gate surrounding at least one fin of a given one of the VTFETs comprises a gate self-aligned contact (SAC) capping layer disposed over a gate contact metal layer, the gate contact metal layer being disposed adjacent an end of the at least one fin.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: May 19, 2020
    Assignee: International Business Machines Corporation
    Inventors: Choonghyun Lee, Chun Wing Yeung, Ruqiang Bao, Hemanth Jagannathan
  • Publication number: 20200152631
    Abstract: A semiconductor device includes a first diffusion region having a first conductivity type, a first SiGe fin formed on the first diffusion region, a second diffusion region having a second conductivity type, and a second SiGe fin formed on the second diffusion region and including a central portion including a first amount of Ge, and a surface portion including a second amount of Ge which is greater than the first amount. A total width of the central portion and the surface portion is substantially equal to a width of the second diffusion region.
    Type: Application
    Filed: December 31, 2019
    Publication date: May 14, 2020
    Inventors: Robin Hsin Kuo Chao, Hemanth Jagannathan, Choonghyun Lee, Chun Wing Yeung, II, Jingyun Zhang
  • Publication number: 20200144406
    Abstract: The present invention provides a method and a structure of increasing source and drain contact edge width in a two-dimensional material field effect transistor. The method includes patterning a two-dimensional material over an insulating substrate; depositing a gate dielectric over the two-dimensional material; depositing a top gate over the gate dielectric, wherein the top gate has a hard mask thereon; forming a sidewall spacer around the top gate; depositing an interlayer dielectric oxide over the sidewall spacer and the hard mask; removing the interlayer dielectric oxide adjacent to the sidewall spacer to form an open contact trench; depositing a copolymer coating in the contact trench region; annealing the copolymer to induce a directed self-assembly; performing a two-dimensional material etch over the two-dimensional material; removing the unetched copolymer without etching the gate dielectric; and etching the exposed gate in the source and the drain region to form a metal contact layer.
    Type: Application
    Filed: January 8, 2020
    Publication date: May 7, 2020
    Inventors: Chi-Chun Liu, Chun Wing Yeung, Chen Zhang
  • Patent number: 10622489
    Abstract: Techniques for integrating a self-aligned heterojunction for TFETs in a vertical GAA architecture are provided. In one aspect, a method of forming a vertical TFET device includes: forming a doped SiGe layer on a Si substrate; forming fins that extend through the doped SiGe layer and partway into the Si substrate such that each of the fins includes a doped SiGe portion disposed on a Si portion with a heterojunction therebetween, wherein the SiGe portion is a source and the Si portion is a channel; selectively forming oxide spacers, aligned with the heterojunction, along opposite sidewalls of only the doped SiGe portion; and forming a gate stack around the Si portion and doped SiGe that is self-aligned with the heterojunction. A vertical TFET device formed by the method is also provided.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: April 14, 2020
    Assignee: International Business Machines Corporation
    Inventors: Chun Wing Yeung, Choonghyun Lee, Shogo Mochizuki, Ruqiang Bao
  • Patent number: 10615278
    Abstract: A semiconductor structure includes a stained fin, a gate upon the strain fin, and a spacer upon a sidewall of the gate and upon an end surface of the strained fin. The end surface of the strained fin is coplanar with a sidewall of the gate. The spacer limits relaxation of the strained fin.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: April 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Hong He, Sivananda K. Kanakasabapathy, Gauri Karve, Juntao Li, Fee Li Lie, Derrick Liu, Chun Wing Yeung
  • Patent number: 10600887
    Abstract: A method of forming a vertical transport fin field effect transistor is provided. The method includes forming a doped layer on a substrate, and forming a multilayer fin on the doped layer, where the multilayer fin includes a lower trim layer portion, an upper trim layer portion, and a fin channel portion between the upper and lower trim layer portions. A portion of the lower trim layer portion is removed to form a lower trim layer post, and a portion of the upper trim layer portion is removed to form an upper trim layer post. An upper recess filler is formed adjacent to the upper trim layer post, and a lower recess filler is formed adjacent to the lower trim layer post. A portion of the fin channel portion is removed to form a fin channel post between the upper trim layer post and lower trim layer post.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: March 24, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tenko Yamashita, Chun Wing Yeung, Chen Zhang
  • Publication number: 20200075772
    Abstract: A semiconductor device includes a semiconductor wafer having one or more suspended nanosheet extending between first and second source/drain regions. A gate structure wraps around the nanosheet stack to define a channel region located between the source/drain regions. The semiconductor device further includes a first all-around source/drain contact formed in the first source/drain region and a second all-around source/drain contact formed in the second source/drain region. The first and second all-around source/drain contacts each include a source/drain epitaxy structure and an electrically conductive external portion that encapsulates the source/drain epitaxy structure.
    Type: Application
    Filed: November 5, 2019
    Publication date: March 5, 2020
    Inventors: Peng Xu, Chun Wing Yeung, Chen Zhang
  • Patent number: 10580886
    Abstract: The present invention provides a method and a structure of increasing source and drain contact edge width in a two-dimensional material field effect transistor. The method includes patterning a two-dimensional material over an insulating substrate; depositing a gate dielectric over the two-dimensional material; depositing a top gate over the gate dielectric, wherein the top gate has a hard mask thereon; forming a sidewall spacer around the top gate; depositing an interlayer dielectric oxide over the sidewall spacer and the hard mask; removing the interlayer dielectric oxide adjacent to the sidewall spacer to form an open contact trench; depositing a copolymer coating in the contact trench region; annealing the copolymer to induce a directed self-assembly; performing a two-dimensional material etch over the two-dimensional material; removing the unetched copolymer without etching the gate dielectric; and etching the exposed gate in the source and the drain region to form a metal contact layer.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: March 3, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chi-Chun Liu, Chun Wing Yeung, Chen Zhang
  • Publication number: 20200044055
    Abstract: Techniques for VFET gate length control are provided. In one aspect, a method of forming a VFET device includes: patterning fins in a substrate; forming first polymer spacers alongside opposite sidewalls of the fins; forming second polymer spacers offset from the fins by the first polymer spacers; removing the first polymer spacers selective to the second polymer spacers; reflowing the second polymer spacers to close a gap to the fins; forming a cladding layer above the second polymer spacers; removing the second polymer spacers; forming gates along opposite sidewalls of the fins exposed in between the bottom spacers and the cladding layer, wherein the gates have a gate length Lg set by removal of the second polymer spacers; forming top spacers above the cladding layer; and forming top source and drains above the top spacers. A VFET device is also provided.
    Type: Application
    Filed: October 9, 2019
    Publication date: February 6, 2020
    Inventors: Chi-Chun Liu, Chun Wing Yeung, Robin Hsin Kuo Chao, Zhenxing Bi, Kristin Schmidt, Yann Mignot
  • Patent number: 10546957
    Abstract: A semiconductor device includes a semiconductor wafer having one or more suspended nanosheet extending between first and second source/drain regions. A gate structure wraps around the nanosheet stack to define a channel region located between the source/drain regions. The semiconductor device further includes a first all-around source/drain contact formed in the first source/drain region and a second all-around source/drain contact formed in the second source/drain region. The first and second all-around source/drain contacts each include a source/drain epitaxy structure and an electrically conductive external portion that encapsulates the source/drain epitaxy structure.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: January 28, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Peng Xu, Chun Wing Yeung, Chen Zhang
  • Publication number: 20200027984
    Abstract: A method of forming a semiconductor structure includes forming at least one fin disposed over a substrate, wherein sidewalls of the at least one fin includes a first portion proximate a top surface of the substrate having a tapered profile and a second portion disposed above the first portion. The method also includes forming a bottom source/drain region surrounding at least part of the first portion of the sidewalls of the at least one fin having the tapered profile and forming a bottom spacer disposed over a top surface of the bottom source/drain region surrounding at least part of the second portion of the sidewalls of the at least one fin. The at least one fin provides a channel for a vertical field-effect transistor.
    Type: Application
    Filed: October 1, 2019
    Publication date: January 23, 2020
    Inventors: Chun Wing Yeung, ChoongHyun Lee, Jingyun Zhang, Robin Hsin Kuo Chao, Heng Wu
  • Patent number: 10541239
    Abstract: A semiconductor device includes a first SiGe fin formed on a substrate and including a first amount of Ge, and a second SiGe fin formed on a substrate and including a central portion including a second amount of Ge, and a surface portion comprising a third amount of Ge which is greater than the second amount.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: January 21, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robin Hsin-Ku Chao, Hemanth Jagannathan, ChoongHyun Lee, Chun Wing Yeung, Jingyun Zhang
  • Publication number: 20200020587
    Abstract: A method of fabricating a vertically stacked nanosheet semiconductor device includes epitaxially growing at least three layers each of alternating silicon and silicon germanium layers on a substrate and patterning a gate structure. The method includes performing at least three reactive ion etch processes forming recesses. The method includes forming source or drain regions in a channel formed by a shallow trench isolation layer formed in the recesses. The method includes growing a first epitaxial layer on the source or drain regions, forming at least three pFET structures. The method includes etching away a portion of each of the pFET structures and depositing a dielectric layer on each. The method includes growing a second epitaxial layer, forming at least three nFET structures. Each layer of the pFET structure and nFET structure are stacked vertically and each layer of the pFET structure and nFET structures have independent source or drain contacts.
    Type: Application
    Filed: September 25, 2019
    Publication date: January 16, 2020
    Inventors: Kangguo Cheng, Tenko Yamahita, Chun Wing Yeung, Chen Zhang
  • Patent number: 10529850
    Abstract: A method of forming a semiconductor structure includes forming at least one fin disposed over a substrate, wherein sidewalls of the at least one fin includes a first portion proximate a top surface of the substrate having a tapered profile and a second portion disposed above the first portion. The method also includes forming a bottom source/drain region surrounding at least part of the first portion of the sidewalls of the at least one fin having the tapered profile and forming a bottom spacer disposed over a top surface of the bottom source/drain region surrounding at least part of the second portion of the sidewalls of the at least one fin. The at least one fin provides a channel for a vertical field-effect transistor.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: January 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Chun Wing Yeung, ChoongHyun Lee, Jingyun Zhang, Robin Hsin Kuo Chao, Heng Wu