Patents by Inventor Chun-Cheng Lin

Chun-Cheng Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11982866
    Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a stopping assembly. The fixed assembly has a main axis. The movable assembly is configured to connect an optical element, and the movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The stopping assembly is configured to limit the movement of the movable assembly relative to the fixed assembly within a range of motion.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: May 14, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Liang-Ting Ho, Chen-Er Hsu, Yi-Liang Chan, Fu-Lai Tseng, Fu-Yuan Wu, Chen-Chi Kuo, Ying-Jen Wang, Wei-Han Hsia, Yi-Hsin Tseng, Wen-Chang Lin, Chun-Chia Liao, Shou-Jen Liu, Chao-Chun Chang, Yi-Chieh Lin, Shang-Yu Hsu, Yu-Huai Liao, Shih-Wei Hung, Sin-Hong Lin, Kun-Shih Lin, Yu-Cheng Lin, Wen-Yen Huang, Wei-Jhe Shen, Chih-Shiang Wu, Sin-Jhong Song, Che-Hsiang Chiu, Sheng-Chang Lin
  • Patent number: 11985324
    Abstract: Exemplary video processing methods and apparatuses for encoding or decoding a current block by inter prediction are disclosed. Input data of a current block is received and partitioned into sub-partitions and motion refinement is independently performed on each sub-partition. A reference block for each sub-partition is obtained from one or more reference pictures according to an initial motion vector (MV). A refined MV for each sub-partition is derived by searching around the initial MV with N-pixel refinement. One or more boundary pixels of the reference block for a sub-partition is padded for motion compensation of the sub-partition. A final predictor for the current block is generated by performing motion compensation for each sub-partition according to its refined MV. The current block is then encoded or decoded according to the final predictor.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: May 14, 2024
    Assignee: HFI INNOVATION INC.
    Inventors: Yu-Cheng Lin, Chun-Chia Chen, Chih-Wei Hsu, Ching-Yeh Chen, Tzu-Der Chuang, Yu-Wen Huang
  • Patent number: 11984363
    Abstract: A semiconductor device includes a semiconductor substrate, a first epitaxial feature having a first semiconductor material over the semiconductor substrate, and a second epitaxial feature having a second semiconductor material over the semiconductor substrate. The second semiconductor material being different from the first semiconductor material. The semiconductor device further includes a first silicide layer on the first epitaxial feature, a second silicide layer on the second epitaxial feature, a metal layer on the first silicide layer, a first contact feature over the metal layer, and a second contact feature over the second silicide layer. A first number of layers between the first contact feature and the first epitaxial feature is greater than a second number of layers between the second contact feature and the second epitaxial feature.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Cheng Chen, Chun-Hsiung Lin, Chih-Hao Wang
  • Publication number: 20240154447
    Abstract: A power system including a first battery pack, a second battery pack, and a power management circuit is disclosed. The first battery pack has a first end and a second end, and has a first battery capacity. The second battery pack has a third end and a fourth end. The third end is coupled to the second end of the first battery pack and provides a low battery voltage. The fourth end is grounded, the second battery pack has a second battery capacity, and the second battery capacity is greater than the first battery capacity. The power management circuit is coupled to the second battery pack to receive the low battery voltage, and provides a component operating voltage to an electronic components based on the low battery voltage.
    Type: Application
    Filed: August 29, 2023
    Publication date: May 9, 2024
    Applicant: PEGATRON CORPORATION
    Inventors: Yi-Hsuan Lee, Liang-Cheng Kuo, Chun-Wei Ko, Ya Ju Cheng, Chih Wei Huang, Ywh Woei Yeh, Yu Cheng Lin, Yen Ting Wang
  • Publication number: 20240152880
    Abstract: A multi-channel payment method for a multi-channel payment system comprises the payer or the payee who initiated the payment request logs in to the multi-channel payment system; the payer or the payee who initiated the payment request placing an order in the multi-channel payment system, wherein the order comprises a designated payment gateway; the multi-channel payment system determining a predicted fee of the order according to the designated payment gateway, past order records, and a real-time exchange rate; the multi-channel payment system performing an anti-money laundering verification of the order; the payer reviewing the order and the predicted fee through a multiple auditing method; and the multi-channel payment system executing payment from the payer to the payee according to the order and the designated payment gateway, and storing a payment detail of the order.
    Type: Application
    Filed: February 13, 2023
    Publication date: May 9, 2024
    Applicant: OBOOK INC.
    Inventors: Chun-Kai Wang, Chung-Han Hsieh, Chun-Jen Chen, Po-Hua Lin, Wei-Te Lin, Pei-Hsuan Weng, Mei-Su Wang, I-Cheng Lin, Cheng-Wei Chen
  • Patent number: 11978678
    Abstract: A display device includes a first substrate, a light-emitting element, a light conversion layer, and a color filter layer. The light-emitting element is disposed on the first substrate. The light conversion layer is disposed on the light-emitting element. In addition, the color filter layer is overlapped the light-emitting element and the light conversion layer.
    Type: Grant
    Filed: August 5, 2022
    Date of Patent: May 7, 2024
    Assignee: INNOLUX CORPORATION
    Inventors: Tung-Kai Liu, Tsau-Hua Hsieh, Wei-Cheng Chu, Chun-Hsien Lin, Chandra Lius, Ting-Kai Hung, Kuan-Feng Lee, Ming-Chang Lin, Tzu-Min Yan, Hui-Chieh Wang
  • Patent number: 11973117
    Abstract: Methods of forming contacts for source/drain regions and a contact plug for a gate stack of a finFET device are disclosed herein. Methods include etching a contact opening through a dielectric layer to expose surfaces of a first source/drain contact and repairing silicon oxide structures along sidewall surfaces of the contact opening and along planar surfaces of the dielectric layer to prevent selective loss defects from occurring during a subsequent selective deposition of conductive fill materials and during subsequent etching of other contact openings. The methods further include performing a selective bottom-up deposition of conductive fill material to form a second source/drain contact. According to some of the methods, once the second source/drain contact has been formed, the contact plug may be formed over the gate stack.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: April 30, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Hsien Huang, Chang-Ting Chung, Wei-Cheng Lin, Wei-Jung Lin, Chih-Wei Chang
  • Publication number: 20240136418
    Abstract: A device includes an active region, a gate structure, a source/drain epitaxial structure, an epitaxial layer, a metal alloy layer, a contact, and a contact etch stop layer. The gate structure is across the active region. The source/drain epitaxial structure is over the active region and adjacent the gate structure. The epitaxial layer is over the source/drain epitaxial structure. The metal alloy layer is over the epitaxial layer. The contact is over the metal alloy layer. The contact etch stop layer lines sidewalls of the source/drain epitaxial structure. The metal alloy layer is spaced apart from the contact etch stop layer.
    Type: Application
    Filed: January 3, 2024
    Publication date: April 25, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Cheng CHEN, Chun-Hsiung LIN, Chih-Hao WANG
  • Publication number: 20240124844
    Abstract: The present disclosure provides a method for preparing a composition including mesenchymal stem cells, extracellular vesicles produced by the mesenchymal stem cells, and growth factors, the composition prepared by the method, and use of the composition for treating arthritis. The composition of the present disclosure achieves the effect of treating arthritis through various efficacy experiments.
    Type: Application
    Filed: October 4, 2023
    Publication date: April 18, 2024
    Inventors: Chia-Hsin Lee, Po-Cheng Lin, Yong-Cheng Kao, Ming-Hsi Chuang, Chun-Hung Chen, Chao-Liang Chang, Kai-Ling Zhang
  • Patent number: 11961892
    Abstract: A semiconductor device and methods of forming the same are disclosed. The semiconductor device includes a substrate, first and second source/drain (S/D) regions, a channel between the first and second S/D regions, a gate engaging the channel, and a contact feature connecting to the first S/D region. The contact feature includes first and second contact layers. The first contact layer has a conformal cross-sectional profile and is in contact with the first S/D region on at least two sides thereof. In embodiments, the first contact layer is in direct contact with three or four sides of the first S/D region so as to increase the contact area. The first contact layer includes one of a semiconductor-metal alloy, an III-V semiconductor, and germanium.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Carlos H. Diaz, Chung-Cheng Wu, Chia-Hao Chang, Chih-Hao Wang, Jean-Pierre Colinge, Chun-Hsiung Lin, Wai-Yi Lien, Ying-Keung Leung
  • Publication number: 20240116090
    Abstract: Provided are a tank support jig and a tank cleaning method. The tank support jig for supporting a cylindrical tank includes a curved body having a first end and a second end that face with an interval in between; and a connecting member disposed across the interval, the connecting member connecting the first end and the second end of the curved body such that the interval is adjustable, in which the curved body and the connecting member form an annular structure for the tank that is to be placed horizontally inside the annular structure with the curved body in close contact with at least part of an outer circumferential face of the tank along a circumferential direction of the tank.
    Type: Application
    Filed: January 28, 2022
    Publication date: April 11, 2024
    Inventors: Chun Cheng Chen, Chi Hsing Fu, Katsuyuki Ebisawa, Bo Yu Lin
  • Patent number: 11955579
    Abstract: A method for manufacturing a semiconductor device is provided. The method includes forming a plurality of light-emitting elements on a first substrate and forming a first pattern array on a second substrate, wherein the first pattern array includes an adhesive layer. The method also includes transferring the plurality of light-emitting elements from the first substrate to the second substrate and forming the first pattern array on a third substrate. The method includes transferring the plurality of light-emitting elements from the second substrate to the third substrate, and reducing an adhesion force of a portion of the adhesive layer. The method also includes forming a second pattern array on a fourth substrate, and transferring the plurality of light-emitting elements from the third substrate to the fourth substrate. The pitch between the plurality of light-emitting elements on the first substrate is different than the pitch of the first pattern array.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: April 9, 2024
    Assignee: INNOLUX CORPORATION
    Inventors: Kai Cheng, Tsau-Hua Hsieh, Fang-Ying Lin, Tung-Kai Liu, Hui-Chieh Wang, Chun-Hsien Lin, Jui-Feng Ko
  • Publication number: 20240114614
    Abstract: Disclosed is a thermal conduction-electrical conduction isolated circuit board with a ceramic substrate and a power transistor embedded, mainly comprising: a dielectric material layer, a heat-dissipating ceramic block, a securing portion, a stepped metal electrode layer, a power transistor, and a dielectric material packaging, wherein a via hole is formed in the dielectric material layer, the heat-dissipating ceramic block is correspondingly embedded in the via hole, the heat-dissipating ceramic block has a thermal conductivity higher than that of the dielectric material layer and a thickness less than that of the dielectric material layer, the stepped metal electrode layer conducts electricity and heat for the power transistor, the dielectric material packaging is configured to partially expose the source connecting pin, drain connecting pin, and gate connecting pin of the encapsulated stepped metal electrode layer.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Inventors: HO-CHIEH YU, CHEN-CHENG-LUNG LIAO, CHUN-YU LIN, JASON AN CHENG HUANG, CHIH-CHUAN LIANG, KUN-TZU CHEN, NAI-HIS HU, LIANG-YO CHEN
  • Patent number: 11949040
    Abstract: A method for manufacturing a semiconductor device is provided. The method includes forming a plurality of diodes on a first substrate and forming a first pattern array on a second substrate. The method also includes transferring the plurality of diodes from the first substrate to the second substrate. The method further includes forming the first pattern array on a third substrate. In addition, the method includes transferring the plurality of diodes from the second substrate to the third substrate. The method also includes forming a second pattern array on a fourth substrate. The method further includes transferring the plurality of diodes from the third substrate to the fourth substrate. The pitch between the plurality of diodes on the first substrate is different from the pitch of the first pattern array.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: April 2, 2024
    Assignee: INNOLUX CORPORATION
    Inventors: Kai Cheng, Tsau-Hua Hsieh, Fang-Ying Lin, Tung-Kai Liu, Hui-Chieh Wang, Chun-Hsien Lin, Jui-Feng Ko
  • Publication number: 20240102154
    Abstract: A vacuum processing apparatus (110) for deposition of a material on a substrate is provided. The vacuum processing apparatus (110) includes a vacuum chamber comprising a processing area (111); a deposition apparatus (112) within the processing area (111) of the vacuum chamber; a cooling surface (113) inside the vacuum chamber; and one or more movable shields (220) between the cooling surface (113) and the processing area (111).
    Type: Application
    Filed: February 24, 2020
    Publication date: March 28, 2024
    Inventors: Chun Cheng CHEN, Hung-Wen CHANG, Shin-Hung LIN, Chi-Chang YANG, Christoph MUNDORF, Thomas GEBELE, Jürgen GRILLMAYER
  • Patent number: 11942380
    Abstract: A method includes forming a dummy pattern over test region of a substrate; forming an interlayer dielectric (ILD) layer laterally surrounding the dummy pattern; removing the dummy pattern to form an opening; forming a dielectric layer in the opening; performing a first testing process on the dielectric layer; performing an annealing process to the dielectric layer; and performing a second testing process on the annealed dielectric layer.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Shiang Lin, Chia-Cheng Ho, Chun-Chieh Lu, Cheng-Yi Peng, Chih-Sheng Chang
  • Patent number: 11942543
    Abstract: A high-voltage semiconductor device structure is provided. The high-voltage semiconductor device structure includes a semiconductor substrate, a source ring in the semiconductor substrate, and a drain region in the semiconductor substrate. The high-voltage semiconductor device structure also includes a doped ring surrounding sides and a bottom of the source ring and a well region surrounding sides and bottoms of the drain region and the doped ring. The well region has a conductivity type opposite to that of the doped ring. The high-voltage semiconductor device structure further includes a conductor electrically connected to the drain region and extending over and across a periphery of the well region. In addition, the high-voltage semiconductor device structure includes a shielding element ring between the conductor and the semiconductor substrate. The shielding element ring extends over and across the periphery of the well region.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chou Lin, Yi-Cheng Chiu, Karthick Murukesan, Yi-Min Chen, Shiuan-Jeng Lin, Wen-Chih Chiang, Chen-Chien Chang, Chih-Yuan Chan, Kuo-Ming Wu, Chun-Lin Tsai
  • Patent number: 11935728
    Abstract: In order to reduce the occurrence of current alarms in a semiconductor etching or deposition process, a controller determines an offset in relative positions of a cover ring and a shield over a wafer within a vacuum chamber. The controller provides a position alarm and/or adjusts the position of the cover ring or shield when the offset is greater than a predetermined value or outside a range of acceptable values.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: March 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Cheng Wu, Sheng-Ying Wu, Ming-Hsien Lin, Chun Fu Chen
  • Patent number: 11929417
    Abstract: A semiconductor device and methods of forming the same are disclosed. The semiconductor device includes a substrate, first and second source/drain (S/D) regions, a channel between the first and second S/D regions, a gate engaging the channel, and a contact feature connecting to the first S/D region. The contact feature includes first and second contact layers. The first contact layer has a conformal cross-sectional profile and is in contact with the first S/D region on at least two sides thereof. In embodiments, the first contact layer is in direct contact with three or four sides of the first S/D region so as to increase the contact area. The first contact layer includes one of a semiconductor-metal alloy, an III-V semiconductor, and germanium.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: March 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Carlos H. Diaz, Chung-Cheng Wu, Chia-Hao Chang, Chih-Hao Wang, Jean-Pierre Colinge, Chun-Hsiung Lin, Wai-Yi Lien, Ying-Keung Leung
  • Patent number: 11929730
    Abstract: An acoustic wave element includes: a substrate; a bonding structure on the substrate; a support layer on the bonding structure; a first electrode including a lower surface on the support layer; a cavity positioned between the support layer and the first electrode and exposing a lower surface of the first electrode; a piezoelectric layer on the first electrode; and a second electrode on the piezoelectric layer, wherein at least one of the first electrode and the second electrode includes a first layer and a second layer that the first layer has a first acoustic impedance and a first electrical impedance, the second layer has a second acoustic impedance and a second electrical impedance, wherein the first acoustic impedance is higher than the second acoustic impedance, and the second electrical impedance is lower than the first electrical impedance.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: March 12, 2024
    Assignee: EPISTAR CORPORATION
    Inventors: Ta-Cheng Hsu, Wei-Shou Chen, Chun-Yi Lin, Chung-Jen Chung, Wei-Tsuen Ye, Wei-Ching Guo