Patents by Inventor Francois Hebert

Francois Hebert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150041894
    Abstract: A method of fabricating a semiconductor device capable of increasing a breakdown voltage without an additional epitaxial layer or buried layer with respect to a high-voltage horizontal MOSFET.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 12, 2015
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventors: Francois Hebert, I-Shan Sun, Young Bae Kim, Young Ju Kim, Kwang Il Kim, In Taek Oh, Jin Woo Moon
  • Publication number: 20150041892
    Abstract: There are provided a semiconductor device and a method of manufacturing the same. The semiconductor device includes a source region disposed apart from a drain region, a first body region surrounding the source region, a deep well region disposed below the drain region, and a second body region disposed below the first body region. A bottom surface of the second body region is not coplanar with a bottom surface of the deep well region, and the first body region has a different conductivity type from the second body region.
    Type: Application
    Filed: March 18, 2014
    Publication date: February 12, 2015
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventors: Francois HEBERT, I-Shan SUN, Youngbae KIM, Youngju KIM, Kwangil KIM, Intaek OH, Jinwoo MOON
  • Publication number: 20150035051
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of deep trenches. The deep trenches are filled with an epitaxial layer thus forming a top epitaxial layer covering areas above a top surface of the deep trenches covering over the semiconductor substrate. The semiconductor power device further includes a plurality of transistor cells disposed in the top epitaxial layer whereby a device performance of the semiconductor power device is dependent on a depth of the deep trenches and not dependent on a thickness of the top epitaxial layer. Each of the plurality of transistor cells includes a trench DMOS transistor cell having a trench gate opened through the top epitaxial layer and filled with a gate dielectric material.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Inventor: François Hébert
  • Publication number: 20150001618
    Abstract: Provided is a semiconductor package. The semiconductor package includes: a first die that is a monolithic type die, a driver circuit and a low-side output power device formed in the first die; a second die disposed above the first die, the second die comprising a high-side output power device; and a first connection unit disposed between the first die and the second die.
    Type: Application
    Filed: December 12, 2013
    Publication date: January 1, 2015
    Applicant: MagnaChip Semiconductor, Ltd.
    Inventor: Francois HEBERT
  • Publication number: 20150001695
    Abstract: Provided are a semiconductor die and a semiconductor package. The semiconductor package includes: a monolithic die; a driving circuit, a low-side output power device, and a high-side output power device disposed in the monolithic die; and an upper electrode and a lower electrode disposed above and below the monolithic die.
    Type: Application
    Filed: December 12, 2013
    Publication date: January 1, 2015
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventor: Francois HEBERT
  • Publication number: 20140375770
    Abstract: A method and a system for the detection of Foreign Object Debris (FOD) on a surface of a transport infrastructure are described. The method comprises receiving 3D profiles of the surface from at least one 3D laser sensor, the 3D laser sensor including a camera and a laser line projector, the 3D laser sensor being adapted to be displaced to scan the surface of the transport infrastructure and acquire 3D profiles of the surface; analyzing the 3D profiles using a parametric surface model to determine a surface model of the surface; identifying pixels of the 3D profiles located above the surface using the surface model; generating a set of potential FOD by applying a threshold on the pixels located above the surface model to identify a set of at least one protruding object; providing detection information about the potential FOD.
    Type: Application
    Filed: August 28, 2013
    Publication date: December 25, 2014
    Inventors: Richard Habel, John Laurent, Jean-François Hébert, Mario Talbot
  • Patent number: 8916951
    Abstract: A lateral bipolar transistor with deep emitter and deep collector regions is formed using multiple epitaxial layers of the same conductivity type. Deep emitter and deep collector regions are formed without the use of trenches. Vertically aligned diffusion regions are formed in each epitaxial layer so that the diffusion regions merged into a contiguous diffusion region after annealing to function as emitter or collector or isolation structures. In another embodiment, a lateral trench PNP bipolar transistor is formed using trench emitter and trench collector regions. In yet another embodiment, a lateral PNP bipolar transistor with a merged LDMOS transistor is formed to achieve high performance.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: December 23, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Shekar Mallikarjunaswamy, François Hébert
  • Publication number: 20140353749
    Abstract: A semiconductor power device and a method of fabricating the same are provided. The semiconductor power device involving: a first conductivity type semiconductor substrate; an epitaxial layer formed on the semiconductor substrate; a second conductivity type well formed in the semiconductor substrate and the epitaxial layer; a drain region formed in the well; an oxide layer that insulates a gate region from the drain region; a first conductivity type buried layer formed in the well; a second conductivity type drift region surrounding the buried layer; and a second conductivity type TOP region formed between the buried layer and the oxide layer.
    Type: Application
    Filed: December 23, 2013
    Publication date: December 4, 2014
    Applicant: MagnaChip Semiconductor, Ltd.
    Inventors: Francois HEBERT, Young Bae KIM, Jin Woo MOON, Kyung Ho LEE
  • Patent number: 8900983
    Abstract: A vertical semiconductor power device includes a top surface and a bottom surface of a semiconductor substrate constituting a vertical current path for conducting a current there through. The semiconductor power device further includes an over current protection layer composed of a material having a resistance with a positive temperature coefficient (PTC) and the over current protection layer constituting as a part of the vertical current path connected to a source electrode and providing a feedback voltage a gate electrode of the vertical semiconductor power device for limiting a current passing there through for protecting the semiconductor power device at any voltage.
    Type: Grant
    Filed: May 11, 2013
    Date of Patent: December 2, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: François Hébert
  • Publication number: 20140346594
    Abstract: A semiconductor device with an embedded schottky diode and a manufacturing method thereof are provided. A semiconductor device having a schottky diode include: an epilayer of a first conductivity type, a body layer of a second conductivity type, and a source layer of the first conductivity type arranged in that order; a gate trench that extends from the source layer to a part of the epilayer; a body trench formed a predetermined distance from the gate trench and extends from the source layer to a part of the epilayer; and a guard ring of the second conductivity type that contacts an outer wall of the body trench and formed in the epilayer.
    Type: Application
    Filed: August 27, 2013
    Publication date: November 27, 2014
    Applicant: MagnaChip Semiconductor, Ltd.
    Inventor: Francois HEBERT
  • Publication number: 20140334052
    Abstract: A vertical semiconductor power device includes a top surface and a bottom surface of a semiconductor substrate constituting a vertical current path for conducting a current there through. The semiconductor power device further includes an over current protection layer composed of a material having a resistance with a positive temperature coefficient (PTC) and the over current protection layer constituting as a part of the vertical current path connected to a source electrode and providing a feedback voltage a gate electrode of the vertical semiconductor power device for limiting a current passing there through for protecting the semiconductor power device at any voltage.
    Type: Application
    Filed: May 11, 2013
    Publication date: November 13, 2014
    Inventor: François Hébert
  • Patent number: 8878292
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate. The semiconductor power device includes trenched gates each having a stick-up gate segment extended above a top surface of the semiconductor substrate surrounded by sidewall spacers. The semiconductor power device further includes slots opened aligned with the sidewall spacers substantially parallel to the trenched gates. The stick-up gate segment further includes a cap composed of an insulation material surrounded by the sidewall spacers. A layer of barrier metal covers a top surface of the cap and over the sidewall spacers and extends above a top surface of the slots. The slots are filled with a gate material same as the gate segment for functioning as additional gate electrodes for providing a depletion layer extends toward the trenched gates whereby a drift region between the slots and the trenched gate is fully depleted at a gate-to-drain voltage Vgs=0 volt.
    Type: Grant
    Filed: March 2, 2008
    Date of Patent: November 4, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: François Hébert, Madhur Bobde, Anup Bhalla
  • Publication number: 20140306285
    Abstract: Provided is a semiconductor power device. The semiconductor power device includes a well disposed in a substrate, a gate overlapping the well, a source region disposed at one side of the gate, a buried layer disposed in the well, and a drain region or a drift region contacting the buried layer.
    Type: Application
    Filed: December 20, 2013
    Publication date: October 16, 2014
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventors: Young Bae KIM, Jin Woo MOON, Francois HEBERT
  • Patent number: 8860130
    Abstract: This invention discloses a semiconductor power device disposed on a semiconductor substrate includes a plurality of deep trenches with an epitaxial layer filling said deep trenches and a simultaneously grown top epitaxial layer covering areas above top surface of said deep trenches over the semiconductor substrate. A plurality of trench MOSFET cells disposed in said top epitaxial layer with the top epitaxial layer functioning as the body region and the semiconductor substrate acting as the drain region whereby a super-junction effect is achieved through charge balance between the epitaxial layer in the deep trenches and regions in the semiconductor substrate laterally adjacent to the deep trenches. Each of the trench MOSFET cells further includes a trench gate and a gate-shielding dopant region disposed below and substantially aligned with each of the trench gates for each of the trench MOSFET cells for shielding the trench gate during a voltage breakdown.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: October 14, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: François Hébert
  • Patent number: 8853772
    Abstract: High-mobility vertical trench DMOSFETs and methods for manufacturing are disclosed. A source region, a drain region or a channel region of a high-mobility vertical trench DMOSFET may comprise silicon germanium (SiGe) that increases the mobility of the charge carriers in the channel region. In some embodiments the channel region may be strained to increase channel charge carriers mobility.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: October 7, 2014
    Assignee: Alpha & Omega Semiconductor Ltd
    Inventor: François Hébert
  • Publication number: 20140264689
    Abstract: An optical sensor, according to an embodiment of the present invention, includes a photodetector region and a plurality of slats over the photodetector region. In an embodiment, the slats are made up of a plurality of metal layers connected in a stacked configuration with a plurality of metal columns. The metal columns can be made of metal vias, metal contacts and/or metal plugs. In an embodiment, the slats are angled relative to a surface of the photodetector region, wherein the angling of the slats is achieved by the metal layers being laterally offset relative to one another and/or metal columns being laterally offset relative to one another. In an alternative embodiment, the slats are made of an opaque polymer material, such as an opaque photoresist.
    Type: Application
    Filed: December 10, 2013
    Publication date: September 18, 2014
    Applicant: Intersil Americas LLC
    Inventor: Francois Hebert
  • Patent number: 8836064
    Abstract: Light sensors including dielectric optical coatings to shape their spectral responses, and methods for fabricating such light sensors in a manner that accelerates lift-off processes and increases process margins, are described herein. In certain embodiments, a short duration soft bake is performed. Alternatively, or additionally, temperature cycling is performed. Alternatively, or additionally, photolithography is performed using a photomask that includes one or more dummy corners, dummy islands and/or dummy rings. Each of the aforementioned embodiments form and/or increase a number of micro-cracks in the dielectric optical coating not covering the photodetector sensor region, thereby enabling an accelerated lift-off process and an increased process margin. Alternatively, or additionally, a portion of the photomask can include chamfered corners so that the dielectric optical coating includes chamfered corners, which improves the thermal reliability of the dielectric optical coating.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: September 16, 2014
    Assignee: Intersil Americas LLC
    Inventors: Eric S. Lee, Michael I-Shan Sun, Francois Hebert
  • Publication number: 20140239383
    Abstract: Power wafer level chip scale package (CSP) and process of manufacture are enclosed. The power wafer level chip scale package includes all source, gate and drain electrodes located on one side of the device, which is convenient for mounting to a printed circuit board (PCB) with solder paste.
    Type: Application
    Filed: May 6, 2014
    Publication date: August 28, 2014
    Applicant: Alpha & Omega Semiconductor, LTD
    Inventors: Tao Feng, FRANÇOIS HÉBERT, Ming Sun, Yueh-Se Ho
  • Patent number: 8815641
    Abstract: A method and structure for a semiconductor device including a thin nitride layer formed between a diamond SOI layer and device silicon layer to block diffusion of ions and improve lifetime of the device silicon.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: August 26, 2014
    Assignee: Soitec
    Inventors: Rick C. Jerome, Francois Hebert, Craig McLachlan, Kevin Hoopingarner
  • Publication number: 20140225188
    Abstract: A semiconductor device includes a gate electrode, a top source region disposed next to the gate electrode, a drain region disposed below the bottom of the gate electrode, a oxide disposed on top of the source region and the gate electrode, and a doped polysilicon spacer disposed along a sidewall of the source region and a sidewall of the oxide. Methods for manufacturing such device are also disclosed. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: April 18, 2014
    Publication date: August 14, 2014
    Applicant: Alpha & Omega Semiconductor, LTD
    Inventors: François Hébert, Anup Bhalla