Patents by Inventor Janardhanan S. Ajit

Janardhanan S. Ajit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6856176
    Abstract: A method of providing bias voltages for input output connections on low voltage integrated circuits. As integrated circuit voltages drop generally so does the external voltages that those circuits can handle. By placing input and output devices, in series, external voltages can be divided between the devices thereby reducing junction voltages seen by internal devices. By using external voltages as part of a biasing scheme for integrated circuit devices, stress created by the differential between external voltages and internal voltages can be minimized. Additionally device wells can be biased so that they are at a potential that is dependant on the external voltages seen by the low voltage integrated circuit.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: February 15, 2005
    Assignee: Broadcom Corporation
    Inventor: Janardhanan S. Ajit
  • Patent number: 6847248
    Abstract: A method of providing bias voltages for input output connections on low voltage integrated circuits. As integrated circuit voltages drop generally so does the external voltages that those circuits can handle. By placing input and output devices, in series, external voltages can be divided between the devices thereby reducing junction voltages seen by internal devices. By using external voltages as part of a biasing scheme for integrated circuit devices, stress created by the differential between external voltages and internal voltages can be minimized. Additionally device wells can be biased so that they are at a potential that is dependent on the external voltages seen by the low voltage integrated circuit.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: January 25, 2005
    Assignee: Broadcom Corporation
    Inventor: Janardhanan S. Ajit
  • Patent number: 6844755
    Abstract: Methods and systems for maintaining desired circuit and/or signal characteristics, such as impedance matching characteristics and rise and fall time characteristics, over a range of PVT variations. In an embodiment, a PVT compensating circuit senses one or more circuit and/or signal characteristics at an output pad or terminal. When the one or more circuit and/or signal characteristics are affected by PVT variations in the IC and/or load, the PVT compensating circuit controls a variable output drive to maintain the one or more circuit and/or signal characteristics within a desired or predetermined range. The PVT compensating circuit is designed to compensate over a range of PVT variations. In an embodiment, the PVT compensating circuit senses a rate of voltage change over time (i.e., dV/dt), of an output signal at the output terminal. During state transitions of the output signal, the output signal is adjusted as needed to maintain a desired, or pre-determined, rate of voltage change.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: January 18, 2005
    Assignee: Broadcom Corporation
    Inventor: Janardhanan S. Ajit
  • Patent number: 6839211
    Abstract: Methods and systems for protecting integrated circuits (“ICs”) from power-on sequence currents, including methods and systems for biasing transistors in paths susceptible to power-on sequence damage such that these paths do not have substantial current flow unless the power supplies controlling the gate of the susceptible transistors are powered on. In an embodiment, the invention is applied to a circuit having a first and second IC terminals coupled to a first and second power supplies, respectively. The invention protects the circuit in the event that the first power supply is powered-on before the second power supply is powered-on. The method includes sensing voltage amplitudes from the first and second power supplies. When first power supply is powered-on before the second power supply is powered-on, the first IC terminal is coupled to the second IC terminal. The substantially prevents undesired power-on sequence currents from flowing between the first and second IC terminals.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: January 4, 2005
    Assignee: Broadcom Corporation
    Inventor: Janardhanan S. Ajit
  • Patent number: 6828631
    Abstract: A high voltage insulated gate field-effect transistor includes an insulated gate field-effect device structure having a source and a drain, the drain being formed with an extended well region having one or more buried layers of opposite conduction type sandwiched therein. The one or more buried layers create an associated plurality of parallel JFET conduction channels in the extended portion of the well region. The parallel JFET conduction channels provide the HVFET with a low on-state resistance.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: December 7, 2004
    Assignee: Power Integrations, Inc
    Inventors: Vladimir Rumennik, Donald R. Disney, Janardhanan S. Ajit
  • Publication number: 20040232963
    Abstract: Methods and systems for limiting power supply and ground bounce enables control of the output current drive dependent on the changes in supply (VDD and GND) levels. This is made possible by making the gate drive of the output driver PMOS and NMOS dependent on the VDD and GND swings. When the VDD or GND increases above normal operating levels, the gate drive of the output driver PMOS is reduced and when the GND or VDD reduces below normal operating levels, the gate drive of the output driver NMOS is reduced. This leads to reduced current flow between the supplies and the pad thereby reducing the VDD and GND bounce problem.
    Type: Application
    Filed: June 14, 2004
    Publication date: November 25, 2004
    Applicant: Broadcom Corporation
    Inventor: Janardhanan S. Ajit
  • Patent number: 6815995
    Abstract: Methods and systems for controlling delay relatively independent of process, supply-voltage, and/or temperature (“PVT”) variations include sensing an output signal after a number of inverters and activating different numbers of transistors and/or adjusting strength of transistors in a delay path to compensate for PVT variations. In an embodiment, a waveform is received, delayed, and output to an output terminal using at least one relatively low-power device. Supplemental output power is provided by at least one relatively high-power device until the output waveform exceeds a threshold.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: November 9, 2004
    Assignee: Broadcom Corporation
    Inventor: Janardhanan S. Ajit
  • Publication number: 20040207012
    Abstract: A high voltage insulated gate field-effect transistor includes an insulated gate field-effect device structure having a source and a drain, the drain being formed with an extended well region having one or more buried layers of opposite conduction type sandwiched therein. The one or more buried layers create an associated plurality of parallel JFET conduction channels in the extended portion of the well region. The parallel JFET conduction channels provide the HVFET with a low on-state resistance.
    Type: Application
    Filed: May 5, 2004
    Publication date: October 21, 2004
    Applicant: Power Integrations, Inc.
    Inventors: Vladimir Rumennik, Donald R. Disney, Janardhanan S. Ajit
  • Publication number: 20040207438
    Abstract: An input circuit has hysteresis to mitigate the effects of input noise. The input circuit receives an analog input signal and determines whether the unregulated analog input signal is a high or a low voltage. The input circuit outputs a regulated low voltage (i.e., “0”) for a low input signal, and outputs a regulated high voltage (i.e., “1”) for a high input signal. The low-to-high transition occurs at a higher voltage than a high-to-low transition, which mitigates noise on the input signal. Furthermore, the comparator includes a feedback path from an output of the comparator to an input of the comparator. The feedback path causes some delay in any output voltage transition (i.e. high-to-low output transition or low-to-high transition), which further enhances the hysteresis effect and improves noise immunity. An embodiment of the circuit interfaces with high voltage (e.g., 5V) input signals and outputs low voltage (e.g., 1.2V) output signals.
    Type: Application
    Filed: May 14, 2004
    Publication date: October 21, 2004
    Inventor: Janardhanan S. Ajit
  • Patent number: 6800903
    Abstract: A high voltage insulated gate field-effect transistor includes an insulated gate field-effect device structure having a source and a drain, the drain being formed with an extended well region having one or more buried layers of opposite conduction type sandwiched therein. The one or more buried layers create an associated plurality of parallel JFET conduction channels in the extended portion of the well region. The parallel JFET conduction channels provide the HVFET with a low on-state resistance.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: October 5, 2004
    Assignee: Power Integrations, Inc.
    Inventors: Vladimir Rumennik, Donald R. Disney, Janardhanan S. Ajit
  • Patent number: 6787437
    Abstract: A high voltage insulated gate field-effect transistor includes an insulated gate field-effect device structure having a source and a drain, the drain being formed with an extended well region having one or more buried layers of opposite conduction type sandwiched therein. The one or more buried layers create an associated plurality of parallel JFET conduction channels in the extended portion of the well region. The parallel JFET conduction channels provide the HVFET with a low on-state resistance.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: September 7, 2004
    Assignee: Power Integrations, Inc.
    Inventors: Vladimir Rumennik, Donald R. Disney, Janardhanan S. Ajit
  • Patent number: 6777749
    Abstract: A high voltage insulated gate field-effect transistor includes an insulated gate field-effect device structure having a source and a drain, the drain being formed with an extended well region having one or more buried layers of opposite conduction type sandwiched therein. The one or more buried layers create an associated plurality of parallel JFET conduction channels in the extended portion of the well region. The parallel JFET conduction channels provide the HVFET with a low on-state resistance.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: August 17, 2004
    Assignee: Power Integrations, Inc.
    Inventors: Vladimir Rumennik, Donald R. Disney, Janardhanan S. Ajit
  • Publication number: 20040155683
    Abstract: Methods and systems for sensing load conditions and for adjusting output current drive according to the sensed load conditions to maintain one or more signal characteristics within a desired range. Load conditions are sensed by monitoring one or more signal characteristics that are affected by load conditions, such as voltage changes with respect to time. Output current drive is then adjusted, as needed, to maintain the one or more desired signal characteristics. In an embodiment, rising and/or falling edge slopes are monitored. For example, a dV/dt may be monitored. The dV/dt can be monitored by coupling a capacitance to the output signal, generating a current with the capacitance, and generating a voltage from the current. The voltage is generally proportional to the dV/dt. Depending upon the load conditions, a supplemental current is generated and/or adjusted and added to the output signal to maintain the desired signal characteristics within a desired range.
    Type: Application
    Filed: November 12, 2003
    Publication date: August 12, 2004
    Applicant: Broadcom Corporation
    Inventor: Janardhanan S. Ajit
  • Patent number: 6768172
    Abstract: A high voltage insulated gate field-effect transistor includes an insulated gate field-effect device structure having a source and a drain, the drain being formed with an extended well region having one or more buried layers of opposite conduction type sandwiched therein. The one or more buried layers create an associated plurality of parallel JFET conduction channels in the extended portion of the well region. The parallel JFET conduction channels provide the HVFET with a low on-state resistance.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: July 27, 2004
    Assignee: Power Integrations, Inc.
    Inventors: Vladimir Rumennik, Donald R. Disney, Janardhanan S. Ajit
  • Patent number: 6765426
    Abstract: Methods and systems for limiting power supply and ground bounce enables control of the output current drive dependent on the changes in supply (VDD and GND) levels. This is made possible by making the gate drive of the output driver PMOS and NMOS dependent on the VDD and GND swings. When the VDD or GND increases above normal operating levels, the gate drive of the output driver PMOS is reduced and when the GND or VDD reduces below normal operating levels, the gate drive of the output driver NMOS is reduced. This leads to reduced current flow between the supplies and the pad thereby reducing the VDD and GND bounce problem.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: July 20, 2004
    Assignee: Broadcom Corporation
    Inventor: Janardhanan S. Ajit
  • Publication number: 20040130836
    Abstract: Methods and systems for protecting integrated circuits (“ICs”) from power-on sequencing problems provide an interim voltage during power-on sequences in order to prevent over-voltage conditions across IC terminals. Voltages at first and second terminals of a circuit are monitored and an interim voltage to the second terminal is provided when the voltage at the first terminal exceeds a first threshold and a voltage at the second terminal is below a second threshold. The interim voltage protects the circuit from excessive voltage differences across the first and second terminals during power-on sequences, and is deactivated during normal operation so as not to draw excessive current. The method/system helps to insure that multi-supply dependent logic and/or other circuitry does not receive inappropriate voltage levels, and thus helps to insure that lower voltage level based circuitry is not damaged during power-up, transients, and/or glitches.
    Type: Application
    Filed: December 22, 2003
    Publication date: July 8, 2004
    Applicant: Broadcom Corporation
    Inventor: Janardhanan S. Ajit
  • Publication number: 20040119526
    Abstract: An apparatus for providing bias voltages for input/output (I/O) connections on low voltage integrated circuits. In one embodiment, the invention comprises an I/O pad, a pull-down transistor device that has a protective transistor coupled to said I/O pad, and a pull-up transistor device that has a second protective transistor, coupled to said I/O pad. A first switch coupled to the first protective transistor is responsive to a first supply voltage, a second supply voltage, and a reference voltage. Likewise, a second switch coupled to the second protective transistor is responsive to the first supply voltage and the reference voltage. A first self-bias circuit is also coupled to the first switch, wherein said the self-bias circuit uses a voltage at said I/O pad to bias the first protective transistor when both of the first and second supply voltages are powered off.
    Type: Application
    Filed: July 14, 2003
    Publication date: June 24, 2004
    Inventor: Janardhanan S. Ajit
  • Patent number: 6741112
    Abstract: An input circuit has hysteresis to mitigate the effects of input noise. The input circuit receives an analog input signal and determines whether the unregulated analog input signal is a high or a low voltage. The input circuit outputs a regulated low voltage (i.e., “0”) for a low input signal, and outputs a regulated high voltage (i.e., “1”) for a high input signal. The low-to-high transition occurs at a higher voltage than a high-to-low transition, which mitigates noise on the input signal. Furthermore, the comparator includes a feedback path from an output of the comparator to an input of the comparator. The feedback path causes some delay in any output voltage transition (i.e. high-to-low output transition or low-to-high transition), which further enhances the hystersis effect and improves noise immunity. An embodiment of the circuit interfaces with high voltage (e.g., 5V) input signals and outputs low voltage (e.g., 1.2V) output signals.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: May 25, 2004
    Assignee: Broadcom Corporation
    Inventor: Janardhanan S. Ajit
  • Publication number: 20040090240
    Abstract: Methods and systems for maintaining desired circuit and/or signal characteristics, such as impedance matching characteristics and rise and fall time characteristics, over a range of PVT variations. In an embodiment, a PVT compensating circuit senses one or more circuit and/or signal characteristics at an output pad or terminal. When the one or more circuit and/or signal characteristics are affected by PVT variations in the IC and/or load, the PVT compensating circuit controls a variable output drive to maintain the one or more circuit and/or signal characteristics within a desired or predetermined range. The PVT compensating circuit is designed to compensate over a range of PVT variations. In an embodiment, the PVT compensating circuit senses a rate of voltage change over time (i.e., dV/dt), of an output signal at the output terminal. During state transitions of the output signal, the output signal is adjusted as needed to maintain a desired, or pre-determined, rate of voltage change.
    Type: Application
    Filed: November 5, 2003
    Publication date: May 13, 2004
    Inventor: Janardhanan S. Ajit
  • Publication number: 20040090255
    Abstract: Methods and systems for controlling delay relatively independent of process, supply-voltage, and/or temperature (“PVT”) variations include sensing an output signal after a number of inverters and activating different numbers of transistors and/or adjusting strength of transistors in a delay path to compensate for PVT variations. In an embodiment, a waveform is received, delayed, and output to an output terminal using at least one relatively low-power device. Supplemental output power is provided by at least one relatively high-power device until the output waveform exceeds a threshold.
    Type: Application
    Filed: September 15, 2003
    Publication date: May 13, 2004
    Applicant: Broadcom Corporation
    Inventor: Janardhanan S. Ajit