Patents by Inventor Jean-Olivier Plouchart

Jean-Olivier Plouchart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180114785
    Abstract: Package structures and methods are provided to integrate optoelectronic and CMOS devices using SOI semiconductor substrates for photonics applications. For example, a package structure includes an integrated circuit (IC) chip, and an optoelectronics device and interposer mounted to the IC chip. The IC chip includes a SOI substrate having a buried oxide layer, an active silicon layer disposed adjacent to the buried oxide layer, and a BEOL structure formed over the active silicon layer. An optical waveguide structure is patterned from the active silicon layer of the IC chip. The optoelectronics device is mounted on the buried oxide layer in alignment with a portion of the optical waveguide structure to enable direct or adiabatic coupling between the optoelectronics device and the optical waveguide structure. The interposer is bonded to the BEOL structure, and includes at least one substrate having conductive vias and wiring to provide electrical connections to the BEOL structure.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 26, 2018
    Inventors: Russell A. Budd, Mounir Meghelli, Jason Scott Orcutt, Jean-Olivier Plouchart
  • Patent number: 9935089
    Abstract: Package structures and methods are provided to integrate optoelectronic and CMOS devices using SOI semiconductor substrates for photonics applications. For example, a package structure includes an integrated circuit (IC) chip, and an optoelectronics device and interposer mounted to the IC chip. The IC chip includes a SOI substrate having a buried oxide layer, an active silicon layer disposed adjacent to the buried oxide layer, and a BEOL structure formed over the active silicon layer. An optical waveguide structure is patterned from the active silicon layer of the IC chip. The optoelectronics device is mounted on the buried oxide layer in alignment with a portion of the optical waveguide structure to enable direct or adiabatic coupling between the optoelectronics device and the optical waveguide structure. The interposer is bonded to the BEOL structure, and includes at least one substrate having conductive vias and wiring to provide electrical connections to the BEOL structure.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: April 3, 2018
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Mounir Meghelli, Jason Scott Orcutt, Jean-Olivier Plouchart
  • Patent number: 9935088
    Abstract: Package structures and methods are provided to integrate optoelectronic and CMOS devices using SOI semiconductor substrates for photonics applications. For example, a package structure includes an integrated circuit (IC) chip, and an optoelectronics device and interposer mounted to the IC chip. The IC chip includes a SOI substrate having a buried oxide layer, an active silicon layer disposed adjacent to the buried oxide layer, and a BEOL structure formed over the active silicon layer. An optical waveguide structure is patterned from the active silicon layer of the IC chip. The optoelectronics device is mounted on the buried oxide layer in alignment with a portion of the optical waveguide structure to enable direct or adiabatic coupling between the optoelectronics device and the optical waveguide structure. The interposer is bonded to the BEOL structure, and includes at least one substrate having conductive vias and wiring to provide electrical connections to the BEOL structure.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: April 3, 2018
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Mounir Meghelli, Jason Scott Orcutt, Jean-Olivier Plouchart
  • Publication number: 20180061853
    Abstract: An amplifier circuit including a substrate layer and a plurality of lateral bipolar junction transistors positioned entirely above the substrate. The lateral bipolar junction transistors include a plurality of monolithic emitter-collector regions coplanar to each other. Each of the emitter-collector regions is both an emitter region of a first bipolar junction transistor a collector region of a second bipolar junction transistor from the lateral bipolar junction transistors. Accordingly, the lateral bipolar junction transistors are electrically coupled in series circuit at the emitter-collector regions.
    Type: Application
    Filed: August 28, 2016
    Publication date: March 1, 2018
    Inventors: Alberto Valdes Garcia, Tak H. Ning, Jean-Olivier Plouchart, Ghavam G. Shahidi, Jeng-Bang Yau
  • Publication number: 20180053784
    Abstract: A radio frequency fully depleted silicon on insulator (RF-FDSOI) device and method of fabrication are provided. A silicon wafer for digital circuits is constructed using fully depleted silicon on insulator technology having a thin buried oxide layer. Localized areas of the silicon wafer are constructed for radio frequency circuits and/or passive devices. The silicon wafer has a silicon substrate having a resistivity greater than 1 K?·cm. The localized areas of the silicon wafer may include a trap rich layer implanted underneath a thin buried oxide layer. The localized areas of the silicon wafer may include a buried oxide layer that is thicker than the thin buried oxide layer. The thicker oxide layer is between 20 and 2000 nm thick. The localized areas of the silicon wafer may include a trap rich layer implanted underneath the thicker buried oxide layer.
    Type: Application
    Filed: August 17, 2016
    Publication date: February 22, 2018
    Inventors: Jin CAI, Jean-Olivier PLOUCHART
  • Publication number: 20180053785
    Abstract: A radio frequency fully depleted silicon on insulator (RF-FDSOI) device and method of fabrication are provided. A silicon wafer for digital circuits is constructed using fully depleted silicon on insulator technology having a thin buried oxide layer. Localized areas of the silicon wafer are constructed for radio frequency circuits and/or passive devices. The silicon wafer has a silicon substrate having a resistivity greater than 1 K?•cm. The localized areas of the silicon wafer may include a trap rich layer implanted underneath a thin buried oxide layer. The localized areas of the silicon wafer may include a buried oxide layer that is thicker than the thin buried oxide layer. The thicker oxide layer is between 20 and 2000 nm thick. The localized areas of the silicon wafer may include a trap rich layer implanted underneath the thicker buried oxide layer.
    Type: Application
    Filed: October 26, 2017
    Publication date: February 22, 2018
    Applicant: International Business Machines Corporation
    Inventors: Jin CAI, Jean-Olivier PLOUCHART
  • Patent number: 9899415
    Abstract: A radio frequency fully depleted silicon on insulator (RF-FDSOI) device and method of fabrication are provided. A silicon wafer for digital circuits is constructed using fully depleted silicon on insulator technology having a thin buried oxide layer. Localized areas of the silicon wafer are constructed for radio frequency circuits and/or passive devices. The silicon wafer has a silicon substrate having a resistivity greater than 1 K?·cm. The localized areas of the silicon wafer may include a trap rich layer implanted underneath a thin buried oxide layer. The localized areas of the silicon wafer may include a buried oxide layer that is thicker than the thin buried oxide layer. The thicker oxide layer is between 20 and 2000 nm thick. The localized areas of the silicon wafer may include a trap rich layer implanted underneath the thicker buried oxide layer.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: February 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Jean-Olivier Plouchart
  • Publication number: 20180040597
    Abstract: Package structures and methods are provided to integrate optoelectronic and CMOS devices using SOI semiconductor substrates for photonics applications. For example, a package structure includes an integrated circuit (IC) chip, and an optoelectronics device and interposer mounted to the IC chip. The IC chip includes a SOI substrate having a buried oxide layer, an active silicon layer disposed adjacent to the buried oxide layer, and a BEOL structure formed over the active silicon layer. An optical waveguide structure is patterned from the active silicon layer of the IC chip. The optoelectronics device is mounted on the buried oxide layer in alignment with a portion of the optical waveguide structure to enable direct or adiabatic coupling between the optoelectronics device and the optical waveguide structure. The interposer is bonded to the BEOL structure, and includes at least one substrate having conductive vias and wiring to provide electrical connections to the BEOL structure.
    Type: Application
    Filed: October 20, 2017
    Publication date: February 8, 2018
    Inventors: Russell A. Budd, Mounir Meghelli, Jason Scott Orcutt, Jean-Olivier Plouchart
  • Publication number: 20180006855
    Abstract: A commutating circuit includes a single-ended mixer and a passive network. The single-ended mixer includes a differential local oscillator terminal. The passive network includes a plurality of inductors and a capacitor. The plurality of inductors can be coupled to the differential local oscillator terminal. The plurality of inductors can provide an impedance in accordance with a common mode or a differential mode. The commutating circuit can be implemented via a device, a system and/or a method.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 4, 2018
    Inventors: WOORAM LEE, JEAN-OLIVIER PLOUCHART, ALBERTO VALDES GARCIA
  • Publication number: 20170291019
    Abstract: Devices and methods are provided for controlled delivery of medical substances such as drugs and medication. For example, a microchip medical substance delivery device includes a control system, and a medical substance capsule that comprises a medical substance contained with a reservoir, and a release structure to release the medical substance from within the reservoir in response to an activation signal generated by the control system. The control system comprises a wireless signal receiving element, processor, actuator circuit, and power supply source. The wireless signal receiving element captures a wireless signal. The processor detects an activation code embedded within the captured wireless signal, and generates an actuator control signal in response to the detection of the activation code. The actuator circuit generates the activation signal in response to the actuator control signal generated by the processor. The power supply source provides power to operate components of the control system.
    Type: Application
    Filed: April 8, 2016
    Publication date: October 12, 2017
    Inventors: Bing Dang, Duixian Liu, Jean-Olivier Plouchart
  • Patent number: 9784917
    Abstract: Embodiments are directed to a coupler system having an interposer configured to couple optical signals. The interposer includes at least one optoelectronic component formed on a glass substrate. The interposer further includes at least one waveguide formed on the glass substrate and configured to couple the optical signals to or from the at least one optoelectronic component, wherein the at least one waveguide comprises a waveguide material having grain diameters greater than about one micron and an optical loss less than about one decibel per centimeter of optical propagation.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: October 10, 2017
    Assignee: International Business Machines Corporation
    Inventors: Stephen M. Gates, Joyeeta Nag, Jason S. Orcutt, Jean-Olivier Plouchart, Spyridon Skordas
  • Patent number: 9786641
    Abstract: Package structures and methods are provided to integrate optoelectronic and CMOS devices using SOI semiconductor substrates for photonics applications. For example, a package structure includes an integrated circuit (IC) chip, and an optoelectronics device and interposer mounted to the IC chip. The IC chip includes a SOI substrate having a buried oxide layer, an active silicon layer disposed adjacent to the buried oxide layer, and a BEOL structure formed over the active silicon layer. An optical waveguide structure is patterned from the active silicon layer of the IC chip. The optoelectronics device is mounted on the buried oxide layer in alignment with a portion of the optical waveguide structure to enable direct or adiabatic coupling between the optoelectronics device and the optical waveguide structure. The interposer is bonded to the BEOL structure, and includes at least one substrate having conductive vias and wiring to provide electrical connections to the BEOL structure.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: October 10, 2017
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Mounir Meghelli, Jason Scott Orcutt, Jean-Olivier Plouchart
  • Patent number: 9772463
    Abstract: An optical interconnect is located on a surface of a semiconductor handle substrate. The optical interconnect includes a waveguide core material portion that is completely surrounded on all four sides by a dielectric oxide-containing cladding structure. The dielectric oxide-containing material of the dielectric oxide-containing cladding structure that is located laterally adjacent end segments of the waveguide core material portion is configured to include a sidewall surface that can receive and transmit light. A plurality of semiconductor devices can be formed above the topmost dielectric oxide-containing material of the dielectric oxide-containing cladding structure.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: September 26, 2017
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Effendi Leobandung, Ning Li, Jean-Olivier Plouchart, Devendra K. Sadana
  • Patent number: 9742147
    Abstract: After forming a first trench extending through a top semiconductor layer and a buried insulator layer and into a handle substrate of a semiconductor-on-insulator (SOI) substrate, a dielectric waveguide material stack including a lower dielectric cladding layer, a core layer and an upper dielectric cladding layer is formed within the first trench. Next, at least one lateral bipolar junction transistor (BJT), which can be a PNP BJT, an NPN BJT or a pair of complementary PNP BJT and NPN BJT, is formed in a remaining portion of the top semiconductor layer. After forming a second trench extending through the dielectric waveguide material stack to re-expose a portion of a bottom surface of the first trench, a laser diode is formed in the second trench.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: August 22, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jin Cai, Effendi Leobandung, Ning Li, Tak H. Ning, Jean-Olivier Plouchart, Devendra K. Sadana
  • Publication number: 20170229783
    Abstract: Antenna devices, antenna systems and methods of their fabrication are disclosed. One such antenna device includes a semiconductor chip and a chip package. The semiconductor chip includes at least one antenna that is integrated into a dielectric layer of the semiconductor chip and is configured to transmit electromagnetic waves. In addition, the chip package includes at least one ground plane, where the semiconductor chip is mounted on the chip package such that the ground plane(s) is disposed at a predetermined distance from the antenna to implement a reflection of at least a portion of the electromagnetic waves.
    Type: Application
    Filed: April 21, 2017
    Publication date: August 10, 2017
    Inventors: DUIXIAN LIU, ARUN S. NATARAJAN, JEAN-OLIVIER PLOUCHART, SCOTT K. REYNOLDS
  • Patent number: 9716367
    Abstract: The present disclosure relates to nitride based optoelectronic and electronic devices with Si CMOS. The disclosure provides a semiconductor device, comprising a sapphire substrate, and a laser region and a detector region deposed on the sapphire substrate. The laser is formed onto the substrate from layers of GaN, InGaN and optionally the AlGaN. The detector can be an InGaN detector. A waveguide may be interposed between the laser and detector regions coupling these regions. The semiconductor device allows integration of nitride base optoelectronic and electronic devices with Si CMOS. The disclosure also provides a method for making the semiconductor devices.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 25, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tymon Barwicz, Effendi Leobandung, Ning Li, Jean-Olivier Plouchart, Devendra K. Sadana
  • Publication number: 20170192172
    Abstract: According to an aspect of the present principles, methods are provided for fabricating an integrated structure. A method includes forming a very large scale integration (VLSI) structure including a semiconductor layer at a top of the VLSI structure. The method further includes mounting the VLSI structure to a support structure. The method additionally includes removing at least a portion of the semiconductor layer from the VLSI structure. The method also includes attaching an upper layer to the top of the VLSI structure. The upper layer is primarily composed of a material that has at least one of a higher resistivity or a higher transparency than the semiconductor layer. The upper layer includes at least one hole for at least one of a photonic device or an electronic device. The method further includes releasing said VLSI structure from the support structure.
    Type: Application
    Filed: March 23, 2017
    Publication date: July 6, 2017
    Inventors: Aydin Babakhani, Steven A. Cordes, Jean-Olivier Plouchart, Scott K. Reynolds, Peter J. Sorce, Robert E. Trzcinski
  • Publication number: 20170186670
    Abstract: Package structures and methods are provided to integrate optoelectronic and CMOS devices using SOI semiconductor substrates for photonics applications. For example, a package structure includes an integrated circuit (IC) chip, and an optoelectronics device and interposer mounted to the IC chip. The IC chip includes a SOI substrate having a buried oxide layer, an active silicon layer disposed adjacent to the buried oxide layer, and a BEOL structure formed over the active silicon layer. An optical waveguide structure is patterned from the active silicon layer of the IC chip. The optoelectronics device is mounted on the buried oxide layer in alignment with a portion of the optical waveguide structure to enable direct or adiabatic coupling between the optoelectronics device and the optical waveguide structure. The interposer is bonded to the BEOL structure, and includes at least one substrate having conductive vias and wiring to provide electrical connections to the BEOL structure.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Inventors: Russell A. Budd, Mounir Meghelli, Jason Scott Orcutt, Jean-Olivier Plouchart
  • Publication number: 20170186739
    Abstract: Package structures and methods are provided to integrate optoelectronic and CMOS devices using SOI semiconductor substrates for photonics applications. For example, a package structure includes an integrated circuit (IC) chip, and an optoelectronics device and interposer mounted to the IC chip. The IC chip includes a SOI substrate having a buried oxide layer, an active silicon layer disposed adjacent to the buried oxide layer, and a BEOL structure formed over the active silicon layer. An optical waveguide structure is patterned from the active silicon layer of the IC chip. The optoelectronics device is mounted on the buried oxide layer in alignment with a portion of the optical waveguide structure to enable direct or adiabatic coupling between the optoelectronics device and the optical waveguide structure. The interposer is bonded to the BEOL structure, and includes at least one substrate having conductive vias and wiring to provide electrical connections to the BEOL structure.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Inventors: Russell A. Budd, Mounir Meghelli, Jason Scott Orcutt, Jean-Olivier Plouchart
  • Patent number: 9692106
    Abstract: Antenna devices, antenna systems and methods of their fabrication are disclosed. One such antenna device includes a semiconductor chip and a chip package. The semiconductor chip includes at least one antenna that is integrated into a dielectric layer of the semiconductor chip and is configured to transmit electromagnetic waves. In addition, the chip package includes at least one ground plane, where the semiconductor chip is mounted on the chip package such that the ground plane(s) is disposed at a predetermined distance from the antenna to implement a reflection of at least a portion of the electromagnetic waves.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: June 27, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Duixian Liu, Arun S. Natarajan, Jean-Olivier Plouchart, Scott K. Reynolds