Patents by Inventor Junji Hirase

Junji Hirase has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120056270
    Abstract: A semiconductor device includes an NMIS transistor including a first gate insulating film containing a high-k dielectric and a first gate electrode provided on the first gate insulating film and containing a metal material and a PMIS transistor including a second gate insulating film containing a high-k dielectric and a second gate electrode provided on the second gate insulating film and containing a metal material. A side surface of the first gate insulating film is located at an inner side of a side surface of the first gate electrode. A ratio of a length of the first gate insulating film along a gate length direction to a length of the first gate electrode along the gate length direction is lower than a ratio of a length of the second gate insulating film along the gate length direction to a length of the second gate electrode along the gate length direction.
    Type: Application
    Filed: November 11, 2011
    Publication date: March 8, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Tomohiro FUJITA, Junji HIRASE, Yoshihiro SATO
  • Publication number: 20120056272
    Abstract: A semiconductor device includes a first transistor having a first conductivity type; and a second transistor having the first conductivity type and having a higher threshold voltage than the first transistor. The first transistor includes a first channel region having a second conductivity type, a first gate insulating film, a first gate electrode, and a first extension region having the first conductivity type. The second transistor includes a second channel region having the second conductivity type, a second gate insulating film, a second gate electrode, and a second extension region having the first conductivity type. The second extension region contains impurities for shallower junction. A junction depth of the second extension region is shallower than a junction depth of the first extension region.
    Type: Application
    Filed: November 16, 2011
    Publication date: March 8, 2012
    Applicant: Panasonic Corporation
    Inventor: Junji HIRASE
  • Patent number: 8129794
    Abstract: A semiconductor device includes a first MIS transistor, and a second MIS transistor having a threshold voltage higher than that of the first MIS transistor. The first MIS transistor includes a first gate insulating film made of a high-k insulating film formed on a first channel region, and a first gate electrode having a first conductive portion provided on and contacting the first gate insulating film and a second conductive portion. The second MIS transistor includes a second gate insulating film made of the high-k insulating film formed on a second channel region, and a second gate electrode having a third conductive portion provided on and contacting the second gate insulating film and a fourth conductive portion. The third conductive portion has a film thickness smaller than that of the first conductive portion, and is made of the same composition material as that of the first conductive portion.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: March 6, 2012
    Assignee: Panasonic Corporation
    Inventor: Junji Hirase
  • Publication number: 20110147857
    Abstract: A semiconductor device includes: a high dielectric constant gate insulating film formed on an active region in a substrate; a gate electrode formed on the high dielectric constant gate insulating film; and an insulating sidewall formed on each side surface of the gate electrode. The high dielectric constant gate insulating film is continuously formed so as to extend from under the gate electrode to under the insulating sidewall. At least part of the high dielectric constant gate insulating film located under the insulating sidewall has a smaller thickness than a thickness of part of the high dielectric constant gate insulating film located under the gate electrode.
    Type: Application
    Filed: March 1, 2011
    Publication date: June 23, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Junji HIRASE, Akio Sebe, Naoki Kotani, Gen Okazaki, Kazuhiko Aida, Shinji Takeoka
  • Patent number: 7923764
    Abstract: A semiconductor device includes: a high dielectric constant gate insulating film formed on an active region in a substrate; a gate electrode formed on the high dielectric constant gate insulating film; and an insulating sidewall formed on each side surface of the gate electrode. The high dielectric constant gate insulating film is continuously formed so as to extend from under the gate electrode to under the insulating sidewall. At least part of the high dielectric constant gate insulating film located under the insulating sidewall has a smaller thickness than a thickness of part of the high dielectric constant gate insulating film located under the gate electrode.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: April 12, 2011
    Assignee: Panasonic Corporation
    Inventors: Junji Hirase, Akio Sebe, Naoki Kotani, Gen Okazaki, Kazuhiko Aida, Shinji Takeoka
  • Patent number: 7804146
    Abstract: A semiconductor device includes an N-type MOS transistor and a P-type MOS transistor. The N-type MOS transistor has a first gate insulating film and a first gate electrode. The P-type MOS transistor has a second gate insulating film and a second gate electrode. The first gate insulating film and the second gate insulating film are made of silicon oxynitride, and the first gate insulating film and the second gate insulating film are different from each other in nitrogen concentration profile.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: September 28, 2010
    Assignee: Panasonic Corporation
    Inventors: Hiroshi Ohkawa, Junji Hirase, Hisashi Ogawa, Kenji Yoneda
  • Patent number: 7732839
    Abstract: A MIS transistor includes a gate electrode portion, insulating sidewalls formed on side surfaces of the gate electrode portion, source/drain regions and a stress film formed so as to cover the gate electrode portion and the source/drain regions. A height of an upper surface of the gate electrode portion is smaller than a height of an upper edge of each of the insulating sidewalls. A thickness of first part of the stress film located on the gate electrode portion is larger than a thickness of second part of the stress film located on the source/drain regions.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: June 8, 2010
    Assignee: Panasonic Corporation
    Inventors: Akio Sebe, Naoki Kotani, Shinji Takeoka, Gen Okazaki, Junji Hirase, Kazuhiko Aida
  • Patent number: 7646065
    Abstract: A semiconductor device includes: an isolation region formed in a semiconductor substrate; an active region surrounded by the isolation region in the semiconductor substrate; a gate insulating film formed on the active region; and a gate electrode formed across the boundary between the active region and the isolation region adjacent to the active region. The gate electrode includes a first portion which is located above the active region with the gate insulating film interposed therebetween and is entirely made of a silicide in a thickness direction and a second portion which is located above the isolation region and is made of a silicon region and the silicide region covering the silicon region.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: January 12, 2010
    Assignee: Panasonic Corporation
    Inventors: Naoki Kotani, Gen Okazaki, Shinji Takeoka, Junji Hirase, Akio Sebe, Kazuhiko Aida
  • Publication number: 20090278210
    Abstract: A semiconductor device includes: a high dielectric constant gate insulating film formed on an active region in a substrate; a gate electrode formed on the high dielectric constant gate insulating film; and an insulating sidewall formed on each side surface of the gate electrode. The high dielectric constant gate insulating film is continuously formed so as to extend from under the gate electrode to under the insulating sidewall. At least part of the high dielectric constant gate insulating film located under the insulating sidewall has a smaller thickness than a thickness of part of the high dielectric constant gate insulating film located under the gate electrode.
    Type: Application
    Filed: July 20, 2009
    Publication date: November 12, 2009
    Applicant: PANASONIC CORPORATION
    Inventors: Junji HIRASE, Akio Sebe, Naoki Kotani, Gen Okazaki, Kazuhiko Aida, Shinji Takeoka
  • Patent number: 7579227
    Abstract: A semiconductor device includes: a high dielectric constant gate insulating film formed on an active region in a substrate; a gate electrode formed on the high dielectric constant gate insulating film; and an insulating sidewall formed on each side surface of the gate electrode. The high dielectric constant gate insulating film is continuously formed so as to extend from under the gate electrode to under the insulating sidewall. At least part of the high dielectric constant gate insulating film located under the insulating sidewall has a smaller thickness than a thickness of part of the high dielectric constant gate insulating film located under the gate electrode.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: August 25, 2009
    Assignee: Panasonic Corporation
    Inventors: Junji Hirase, Akio Sebe, Naoki Kotani, Gen Okazaki, Kazuhiko Aida, Shinji Takeoka
  • Publication number: 20090189225
    Abstract: A semiconductor device includes a first MIS transistor, and a second MIS transistor having a threshold voltage higher than that of the first MIS transistor. The first MIS transistor includes a first gate insulating film made of a high-k insulating film formed on a first channel region, and a first gate electrode having a first conductive portion provided on and contacting the first gate insulating film and a second conductive portion. The second MIS transistor includes a second gate insulating film made of the high-k insulating film formed on a second channel region, and a second gate electrode having a third conductive portion provided on and contacting the second gate insulating film and a fourth conductive portion. The third conductive portion has a film thickness smaller than that of the first conductive portion, and is made of the same composition material as that of the first conductive portion.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 30, 2009
    Inventor: Junji HIRASE
  • Patent number: 7495299
    Abstract: The following steps are carried out: forming a gate electrode on a semiconductor substrate with a gate insulating film interposed therebetween, forming a dummy gate electrode on the semiconductor substrate with a dummy gate insulating film interposed therebetween and forming another dummy gate electrode on the semiconductor substrate with an insulating film for isolation interposed therebetween; forming a metal film on the semiconductor while exposing the gate electrode and covering the dummy gate electrodes; and subjecting the semiconductor substrate to heat treatment and thus siliciding at least an upper part of the gate electrode. Since the gate electrode is silicided and the dummy gate electrodes are non-silicided, this restrains a short circuit from being caused between the gate electrode and adjacent one of the dummy gate electrodes.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: February 24, 2009
    Assignee: Panasonic Corporation
    Inventors: Kazuhiko Aida, Junji Hirase, Hisashi Ogawa, Chiaki Kudo
  • Patent number: 7453106
    Abstract: A semiconductor device includes: a semiconductor substrate formed with an active region and an isolation region and having a trench formed in the isolation region; an isolation insulating film embedded in the trench of the semiconductor substrate; and semiconductor nanocrystals buried in the isolation insulating film. The coefficient of linear expansion of the semiconductor nanocrystal is closer to that of the semiconductor substrate rather than that of the isolation insulating film, so that stress applied to the active region after a thermal treatment or the like is reduced.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: November 18, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shinji Takeoka, Junji Hirase
  • Publication number: 20080258229
    Abstract: A semiconductor device includes an N-type MOS transistor and a P-type MOS transistor. The N-type MOS transistor has a first gate insulating film and a first gate electrode. The P-type MOS transistor has a second gate insulating film and a second gate electrode. The first gate insulating film and the second gate insulating film are made of silicon oxynitride, and the first gate insulating film and the second gate insulating film are different from each other in nitrogen concentration profile.
    Type: Application
    Filed: February 8, 2008
    Publication date: October 23, 2008
    Inventors: Hiroshi OHKAWA, Junji Hirase, Hisashi Ogawa, Kenji Yoneda
  • Publication number: 20080224223
    Abstract: A semiconductor device includes: a first gate electrode formed above a first active region in a substrate with a first gate insulating film interposed therebetween; and a second gate electrode formed above a second active region in the substrate with a second gate insulating film interposed therebetween. The first gate electrode has a shorter gate length than the second gate electrode, the first gate electrode is fully silicided, and at least a portion of the second gate electrode in contact with the second gate insulating film is not silicided.
    Type: Application
    Filed: January 22, 2008
    Publication date: September 18, 2008
    Inventor: Junji HIRASE
  • Publication number: 20080036008
    Abstract: A semiconductor device includes a first MIS transistor and a second MIS transistor. The first MIS transistor includes: a first gate insulating film formed on a first active region of a substrate; and a first gate electrode formed on the first gate insulating film. The second MIS transistor includes: a second gate insulating film formed on a second active region of the substrate and having a dielectric constant lower than the first gate insulating film; and a second gate electrode formed on the second gate insulating film. Insulting sidewall spacers having the same structure are formed on respective side faces of the first gate electrode and the second gate electrode.
    Type: Application
    Filed: August 2, 2007
    Publication date: February 14, 2008
    Inventors: Junji Hirase, Yoshihiro Sato
  • Publication number: 20070200185
    Abstract: A high dielectric constant gate insulating film is formed on an active region of a substrate, and a gate electrode is formed on the high dielectric constant gate insulating film. A high dielectric constant insulating sidewall is formed on a side face of the gate electrode.
    Type: Application
    Filed: October 6, 2006
    Publication date: August 30, 2007
    Inventors: Junji Hirase, Naoki Kotani, Shinji Takeoka, Gen Okazaki, Akio Sebe, Kazuhiko Aida
  • Publication number: 20070131930
    Abstract: The following steps are carried out: forming a gate electrode on a semiconductor substrate with a gate insulating film interposed therebetween, forming a dummy gate electrode on the semiconductor substrate with a dummy gate insulating film interposed therebeweeen and forming another dummy gate electrode on the semiconductor substrate with an insulating film for isolation interposed therebetween; forming a metal film on the semiconductor while exposing the gate electrode and covering the dummy gate electrodes; and subjecting the semiconductor substrate to heat treatment and thus siliciding at least an upper part of the gate electrode. Since the gate electrode is silicided and the dummy gate electrodes are non-silicided, this restrains a short circuit from being caused between the gate electrode and adjacent one of the dummy gate electrodes.
    Type: Application
    Filed: October 10, 2006
    Publication date: June 14, 2007
    Inventors: Kazuhiko Aida, Junji Hirase, Hisashi Ogawa, Chiaki Kudo
  • Publication number: 20070134898
    Abstract: After a Ni film is deposited on a substrate on which a gate silicon layer is formed, a mask is formed above the gate silicon layer. Then, the Ni film is etched so as to leave a part of the Ni film which is located on the gate silicon layer. This restricts sideways supply of Ni present on the sides of the gate silicon layer. Thereafter, thermal treatment is performed to silicidate the gate silicon layer entirely.
    Type: Application
    Filed: October 16, 2006
    Publication date: June 14, 2007
    Inventors: Shinji Takeoka, Junji Hirase, Akio Sebe, Naoki Kotani, Gen Okazaki, Kazuhiko Aida
  • Publication number: 20070105336
    Abstract: A semiconductor device includes: a semiconductor substrate formed with an active region and an isolation region and having a trench formed in the isolation region; an isolation insulating film embedded in the trench of the semiconductor substrate; and semiconductor nanocrystals buried in the isolation insulating film. The coefficient of linear expansion of the semiconductor nanocrystal is closer to that of the semiconductor substrate rather than that of the isolation insulating film, so that stress applied to the active region after a thermal treatment or the like is reduced.
    Type: Application
    Filed: October 11, 2006
    Publication date: May 10, 2007
    Inventors: Shinji Takeoka, Junji Hirase