Patents by Inventor Kai-Ming Ching

Kai-Ming Ching has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100008620
    Abstract: An integrated circuit structure includes a semiconductor chip including a front surface and a back surface; a via extending from the back surface of the semiconductor chip into the semiconductor chip, wherein the via is light transparent; and a photon detector in the semiconductor chip and exposed to the via.
    Type: Application
    Filed: July 10, 2008
    Publication date: January 14, 2010
    Inventors: Shih-Cheng Chang, Jin-Lien Lin, Kuo-Ching Hsu, Kai-Ming Ching, Jiun Yi Wu, Yen-Huei Chen
  • Publication number: 20090269905
    Abstract: An integrated circuit structure includes a substrate; a through-silicon via (TSV) in the substrate, the TSV being tapered; a hard mask region extending from a top surface of the substrate into the substrate, wherein the hard mask encircles a top portion of the TSV; dielectric layers over the substrate; and a metal post extending from a top surface of the dielectric layers to the TSV, wherein the metal post comprises same materials as the TSV.
    Type: Application
    Filed: June 30, 2009
    Publication date: October 29, 2009
    Inventors: Chen-Shien Chen, Chen-Cheng Kuo, Kai-Ming Ching, Chih-Hua Chen
  • Publication number: 20090188104
    Abstract: A method of manufacturing a coil inductor and a coil inductor are provided are provided. A plurality of conductive bottom structures are formed to be lying on a first dielectric layer. A plurality pairs of conductive side structures are then formed, wherein each pair of the conductive side structure stand on top surface of a first end and a second end of each conductive bottom structure respectively; a second dielectric layer is formed on the first dielectric layer, coating the bottom and side structures; and a plurality of conductive top structures are formed to be lying on the second dielectric layer, wherein each conductive top structure electrically connects each pair of the conductive side structures, wherein the conductive bottom structures, the conductive side structures and the conductive top structures together form a conductive coil structure.
    Type: Application
    Filed: January 25, 2008
    Publication date: July 30, 2009
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kai-Ming Ching, Chen-Shien Chen
  • Patent number: 7564115
    Abstract: An integrated circuit structure includes a substrate; a through-silicon via (TSV) in the substrate, the TSV being tapered; a hard mask region extending from a top surface of the substrate into the substrate, wherein the hard mask encircles a top portion of the TSV; dielectric layers over the substrate; and a metal post extending from a top surface of the dielectric layers to the TSV, wherein the metal post comprises same materials as the TSV.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: July 21, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Shien Chen, Chen-Cheng Kuo, Kai-Ming Ching, Chih-Hua Chen
  • Patent number: 7557423
    Abstract: A semiconductor structure includes an inductor; and a semiconductor substrate underlying the inductor, having a discontinuous material density across a plane underneath and in parallel with the inductor, thereby reducing eddy currents induced by an electrical current flowing through the inductor.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: July 7, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kai-Ming Ching, Chen Chen-Shien, Han-Hsiang Huang, Chih-Hua Chen, Chen-Cheng Kuo
  • Publication number: 20090160058
    Abstract: An integrated circuit structure includes a semiconductor substrate; an interconnect structure over the semiconductor substrate, wherein the interconnect structure comprises a top inter-metal dielectric (IMD); an opening penetrating the interconnect structure into the semiconductor substrate; a conductor in the opening; and an isolation layer having a vertical portion and a horizontal portion physically connected to each other. The vertical portion is on sidewalls of the opening. The horizontal portion is directly over the interconnect structure. The integrated circuit structure is free from passivation layers vertically between the top IMD and the horizontal portion of the isolation layer.
    Type: Application
    Filed: May 14, 2008
    Publication date: June 25, 2009
    Inventors: Chen-Cheng Kuo, Kai-Ming Ching, Chen Chen-Shien
  • Publication number: 20090155957
    Abstract: A semiconductor die package is provided. The semiconductor die package includes a plurality of dies arranged in a stacked configuration. Through-silicon vias are formed in the lower or intermediate dies to allow electrical connections to dies stacked above. The lower die is positioned face up and has redistribution lines electrically coupling underlying semiconductor components to the through-silicon vias. The dies stacked above the lower die may be oriented face up such that the contact pads are facing away from the lower die or flipped such that the contact pads are facing the lower die. The stacked dies may be electrically coupled to the redistribution lines via wire bonding or solder balls. Additionally, the lower die may have another set of redistribution lines on an opposing side from the stacked dies to reroute the vias to a different pin-out configuration.
    Type: Application
    Filed: February 25, 2009
    Publication date: June 18, 2009
    Inventors: Chen-Shien Chen, Kai-Ming Ching, Chih-Hua Chen, Chen-Cheng Kuo
  • Publication number: 20090102021
    Abstract: An integrated circuit structure and methods for forming the same are provided. The integrated circuit structure includes a substrate; a through-silicon via (TSV) extending into the substrate; a TSV pad spaced apart from the TSV; and a metal line over, and electrically connecting, the TSV and the TSV pad.
    Type: Application
    Filed: October 17, 2007
    Publication date: April 23, 2009
    Inventors: Chih-Hua Chen, Chen-Shien Chen, Chen-Cheng Kuo, Kuo-Ching Steven Hsu, Kai-Ming Ching
  • Patent number: 7514797
    Abstract: A semiconductor die package is provided. The semiconductor die package includes a plurality of dies arranged in a stacked configuration. Through-silicon vias are formed in the lower or intermediate dies to allow electrical connections to dies stacked above. The lower die is positioned face up and has redistribution lines electrically coupling underlying semiconductor components to the through-silicon vias. The dies stacked above the lower die may be oriented face up such that the contact pads are facing away from the lower die or flipped such that the contact pads are facing the lower die. The stacked dies may be electrically coupled to the redistribution lines via wire bonding or solder balls. Additionally, the lower die may have another set of redistribution lines on an opposing side from the stacked dies to reroute the vias to a different pin-out configuration.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: April 7, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Shien Chen, Kai-Ming Ching, Chih-Hua Chen, Chen-Cheng Kuo
  • Publication number: 20090057823
    Abstract: A semiconductor structure includes an inductor; and a semiconductor substrate underlying the inductor, having a discontinuous material density across a plane underneath and in parallel with the inductor, thereby reducing eddy currents induced by an electrical current flowing through the inductor.
    Type: Application
    Filed: September 5, 2007
    Publication date: March 5, 2009
    Inventors: Kai Ming Ching, Chen Chen-Shien, Han-Hsiang Huang, Chih-Hua Chen, Chen-Cheng Kuo
  • Publication number: 20090051039
    Abstract: A semiconductor device including a substrate having a front surface and a back surface is provided. A plurality of interconnect layers are formed on the front surface and have a first surface opposite the front surface of the substrate. A tapered profile via extends from the first surface of the plurality of interconnect layers to the back surface of the substrate. In one embodiment, a insulating layer is formed on the substrate and includes an opening, and wherein the opening includes conductive material providing contact to the tapered profile via.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 26, 2009
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Cheng Kuo, Chen Chen-Shien, Kai-Ming Ching, Chih-Hua Chen
  • Patent number: 7468321
    Abstract: A new method is provided for the processing of metals, most notably copper, such that damage to exposed surfaces of these metals is prevented. During a step of semiconductor processing, which results in exposing a metal surface to a wet substance having a pH value, a voltage is applied to the metal that is exposed. The value of the applied voltage can, dependent on the value of the pH constant of the wet substance, be selected such that the exposed metal surface is protected against alkaline effects of the wet substance.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: December 23, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kai-Ming Ching, Chia-Fu Lin, Wen-Hsiang Tseng, Ta-Min Lin, Yen-Ming Chen, Hsin-Hui Lee, Chao-Yuan Su, Wen-Hsiang Tseng
  • Publication number: 20080296763
    Abstract: A semiconductor die package is provided. The semiconductor die package includes a plurality of dies arranged in a stacked configuration. Through-silicon vias are formed in the lower or intermediate dies to allow electrical connections to dies stacked above. The lower die is positioned face up and has redistribution lines electrically coupling underlying semiconductor components to the through-silicon vias. The dies stacked above the lower die may be oriented face up such that the contact pads are facing away from the lower die or flipped such that the contact pads are facing the lower die. The stacked dies may be electrically coupled to the redistribution lines via wire bonding or solder balls. Additionally, the lower die may have another set of redistribution lines on an opposing side from the stacked dies to reroute the vias to a different pin-out configuration.
    Type: Application
    Filed: May 31, 2007
    Publication date: December 4, 2008
    Inventors: Chen-Shien Chen, Kai-Ming Ching, Chih-Hua Chen, Chen-Cheng Kuo
  • Publication number: 20080286938
    Abstract: A method for packaging a semiconductor device disclosed. A substrate comprising a plurality of dies, separated by scribe line areas respectively is provided, wherein at least one layer is overlying the substrate. A portion of the layer within the scribe lines area is removed by photolithography and etching to form openings. The substrate is sawed along the scribe line areas, passing the openings. In alternative embodiment, a first substrate comprising a plurality of first dies separated by first scribe line areas respectively is provided, wherein at least one first structural layer is overlying the first substrate. The first structural layer is patterned to form first openings within the first scribe line areas. A second substrate comprising a plurality of second dies separated by second scribe line areas respectively is provided, wherein at least one second structural layer is overlying the substrate. The second structural layer is patterned to form second openings within the second scribe line areas.
    Type: Application
    Filed: May 14, 2007
    Publication date: November 20, 2008
    Inventors: Han-Ping Pu, Bai-Yao Lou, Dean Wang, Ching-Wen Hsiao, Kai-Ming Ching, Chen-Cheng Kuo, Wen-Chih Chiou, Ding-Chung Lu, Shang-Yun Hou
  • Publication number: 20080283959
    Abstract: An integrated circuit structure includes a substrate; a through-silicon via (TSV) in the substrate, the TSV being tapered; a hard mask region extending from a top surface of the substrate into the substrate, wherein the hard mask encircles a top portion of the TSV; dielectric layers over the substrate; and a metal post extending from a top surface of the dielectric layers to the TSV, wherein the metal post comprises same materials as the TSV.
    Type: Application
    Filed: May 16, 2007
    Publication date: November 20, 2008
    Inventors: Chen-Shien Chen, Chen-Cheng Kuo, Kai-Ming Ching, Chih-Hua Chen
  • Patent number: 7276454
    Abstract: A new method is provided for the processing of metals, most notably copper, such that damage to exposed surfaces of these metals is prevented. During a step of semiconductor processing, which results in exposing a metal surface to a wet substance having a pH value, a voltage is applied to the metal that is exposed. The value of the applied voltage can, dependent on the value of the pH constant of the wet substance, be selected such that the exposed metal surface is protected against alkaline effects of the wet substance.
    Type: Grant
    Filed: November 2, 2002
    Date of Patent: October 2, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kai-Ming Ching, Chia Fu Lin, Wen-Hsiang Tseng, Ta-Min Lin, Yen-Ming Chen, Hsin-Hui Lee, Chao-Yuan Su, Li-Chih Chen
  • Publication number: 20070028445
    Abstract: A process including providing a semiconductor device including a bond pad, and an under bump metallurgy overlying the bond pad. Forming a solder structure over the under bump metallurgy, and wherein the solder structure includes an outer layer including tin oxide. Producing a plasma from at least one of CF4 and SF6, and exposing the solder structure to the plasma. Heating the solder structure and cooling the same to provide a solder bump on the semiconductor device.
    Type: Application
    Filed: October 13, 2006
    Publication date: February 8, 2007
    Inventors: Chao-Yuan Su, Chia-Fu Lin, Hsin-Hui Lee, Yen-Ming Chen, Kai-Ming Ching, Li-Chih Chen, Wen-Chang Kuo, Yue-Ying Jian
  • Patent number: 7134199
    Abstract: A process including providing a semiconductor device including a bond pad, and an under bump metallurgy overlying the bond pad. Forming a solder structure over the under bump metallurgy, and wherein the solder structure includes an outer layer including tin oxide. Producing a plasma from at least one of CF4 and SF6, and exposing the solder structure to the plasma. Heating the solder structure and cooling the same to provide a solder bump on the semiconductor device.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: November 14, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chao-Yuan Su, Chia-Fu Lin, Hsin-Hui Lee, Yen-Ming Chen, Kai-Ming Ching, Li-Chih Chen, Wen-Chang Kuo, Yue-Ying Jian
  • Publication number: 20060194407
    Abstract: A new method is provided for the processing of metals, most notably copper, such that damage to exposed surfaces of these metals is prevented. During a step of semiconductor processing, which results in exposing a metal surface to a wet substance having a pH value, a voltage is applied to the metal that is exposed. The value of the applied voltage can, dependent on the value of the pH constant of the wet substance, be selected such that the exposed metal surface is protected against alkaline effects of the wet substance.
    Type: Application
    Filed: May 10, 2006
    Publication date: August 31, 2006
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kai-Ming Ching, Chia Lin, Wen-Hsiang Tseng, Ta-Min Lin, Yen-Ming Chen, Hsin-Hui Lee, Chao-Yuan Su, Wen-Hsiang Tseng
  • Patent number: 6974659
    Abstract: A method for protecting a semiconductor process wafer surface from contacting thermally degraded photoresist including providing a semiconductor process wafer having a process surface; forming a protective layer over selected areas of the process surface said protective layer including a resinous organic material having a glass transition temperature (Tg) that is about greater than a thermal treatment temperature; forming a photoresist layer over at least a portion of the protective layer to include a photolithographic patterning process; and subjecting the semiconductor process wafer to the thermal treatment temperature.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: December 13, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chao-Yuan Su, Chia-Fu Lin, Hsin-Hui Lee, Yen-Ming Chen, Kai-Ming Ching, Li-Chih Chen