Patents by Inventor Karthik Janakiraman

Karthik Janakiraman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11664214
    Abstract: Embodiments of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the embodiments described herein provide techniques for depositing nitrogen-doped diamond-like carbon films for patterning applications. In one or more embodiments, a method for processing a substrate includes flowing a deposition gas containing a hydrocarbon compound and a nitrogen dopant compound into a processing volume of a process chamber having a substrate positioned on an electrostatic chuck, and generating a plasma at or above the substrate by applying a first RF bias to the electrostatic chuck to deposit a nitrogen-doped diamond-like carbon film on the substrate. The nitrogen-doped diamond-like carbon film has a density of greater than 1.5 g/cc and a compressive stress of about ?20 MPa to less than ?600 MPa.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: May 30, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jui-Yuan Hsu, Pramit Manna, Karthik Janakiraman
  • Publication number: 20230146981
    Abstract: Exemplary methods of semiconductor processing may include flowing a silicon-containing precursor into a processing region of a semiconductor processing chamber. A substrate may be housed within the processing region, and the substrate may be maintained at a temperature below or about 450° C. The methods may include striking a plasma of the silicon-containing precursor. The methods may include forming a layer of amorphous silicon on a semiconductor substrate. The layer of amorphous silicon as-deposited may be characterized by less than or about 3% hydrogen incorporation.
    Type: Application
    Filed: January 5, 2023
    Publication date: May 11, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Rui Cheng, Diwakar Kedlaya, Karthik Janakiraman, Gautam K. Hemani, Krishna Nittala, Alicia J. Lustgraaf, Zubin Huang, Brett Spaulding, Shashank Sharma, Kelvin Chan
  • Patent number: 11640905
    Abstract: Exemplary deposition methods may include flowing a silicon-containing precursor into a processing region of a semiconductor processing chamber. The method may include striking a plasma in the processing region between a faceplate and a pedestal of the semiconductor processing chamber. The pedestal may support a substrate including a patterned photoresist. The method may include maintaining a temperature of the substrate less than or about 200° C. The method may also include depositing a silicon-containing film along the patterned photoresist.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: May 2, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Aykut Aydin, Rui Cheng, Karthik Janakiraman
  • Publication number: 20230118964
    Abstract: A target concentration profile for a film to be deposited on a surface of a substrate during a deposition process for the substrate at a process chamber of a manufacturing system is identified. Data of the target concentration profile is processed using a model. The model outputs a set of deposition process settings that corresponds to the target concentration profile. One or more operations of the deposition process are performed in accordance with the set of deposition process settings.
    Type: Application
    Filed: December 19, 2022
    Publication date: April 20, 2023
    Inventors: Anton V. Baryshnikov, Aykut Aydin, Zubin Huang, Rui Cheng, Yi Yang, Diwakar Kedlaya, Venkatanarayana Shankaramurthy, Krishna Nittala, Karthik Janakiraman
  • Patent number: 11618949
    Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the silicon-containing precursor and the boron-containing precursor. A flow rate ratio of the hydrogen-containing precursor to either of the silicon-containing precursor or the boron-containing precursor is greater than or about 2:1. The methods may include forming a plasma of all precursors within the processing region of a semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: April 4, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Yi Yang, Krishna Nittala, Karthik Janakiraman, Aykut Aydin, Diwakar Kedlaya
  • Publication number: 20230093450
    Abstract: The present disclosure provides forming nanostructures utilizing multiple patterning process with good profile control and feature transfer integrity. In one embodiment, a method for forming features on a substrate includes forming a first mandrel layer on a material layer disposed on a substrate. A first spacer layer is conformally formed on sidewalls of the first mandrel layer, wherein the first spacer layer comprises a doped silicon material. The first mandrel layer is selectively removed while keeping the first spacer layer. A second spacer layer is conformally formed on sidewalls of the first spacer layer and selectively removing the first spacer layer while keeping the second spacer layer.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 23, 2023
    Inventors: Tzu-shun YANG, Rui CHENG, Karthik JANAKIRAMAN, Zubin HUANG, Diwakar KEDLAYA, Meenakshi GUPTA, Srinivas GUGGILLA, Yung-chen LIN, Hidetaka OSHIO, Chao LI, Gene LEE
  • Publication number: 20230050255
    Abstract: Exemplary methods of semiconductor processing may include providing a silicon-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be disposed within the processing region of the semiconductor processing chamber. The methods may include depositing a silicon-containing material on the substrate. The silicon-containing material may extend within the one or more recessed features along the substrate and a seam or void may be defined by the silicon-containing material within at least one of the one or more recessed features along the substrate. The methods may also include treating the silicon-containing material with a hydrogen-containing gas, such as plasma effluents of the hydrogen-containing gas, which may cause a size of the seam or void to be reduced.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 16, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Qinghua Zhao, Rui Cheng, Ruiyun Huang, Dong Hyung Lee, Aykut Aydin, Karthik Janakiraman
  • Publication number: 20230051200
    Abstract: Exemplary methods of semiconductor processing may include providing a silicon-containing precursor to a processing region of a semiconductor processing chamber. The methods may include depositing a silicon-containing layer on surfaces defining the processing region of the semiconductor processing chamber. The methods may include forming a plasma of a hydrogen-containing precursor within the processing region of the semiconductor processing chamber. The methods may include depositing a silicon-containing material on a substrate disposed within the processing region of the semiconductor processing chamber.
    Type: Application
    Filed: August 11, 2021
    Publication date: February 16, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Qinghua Zhao, Rui Cheng, Karthik Janakiraman
  • Publication number: 20230023764
    Abstract: Methods and apparatus for surface profiling and texturing of chamber components for use in a process chamber, such surface-profiled or textured chamber components, and method of use of same are provided herein. In some embodiments, a method includes measuring a parameter of a reference substrate or a heated pedestal using one or more sensors and modifying a surface of a chamber component physically based on the measured parameter.
    Type: Application
    Filed: December 15, 2020
    Publication date: January 26, 2023
    Inventors: David W. GROECHEL, Michael R. RICE, Gang Grant PENG, Rui CHENG, Zubin HUANG, Han WANG, Karthik JANAKIRAMAN, Diwakar KEDLAYA, Paul L. BRILLHART, Abdul Aziz KHAJA
  • Publication number: 20230022359
    Abstract: Embodiments of the present disclosure generally relate to methods, apparatus, and systems for maintaining film modulus within a predetermined modulus range. In one implementation, a method of processing substrates includes introducing one or more processing gases to a processing volume of a processing chamber, and depositing a film on a substrate supported on a substrate support disposed in the processing volume. The method includes supplying simultaneously a first radiofrequency (RF) power and a second RF power to one or more bias electrodes of the substrate support. The first RF power includes a first RF frequency and the second RF power includes a second RF frequency that is less than the first RF frequency. A modulus of the film is maintained within a predetermined modulus range.
    Type: Application
    Filed: July 22, 2021
    Publication date: January 26, 2023
    Inventors: Jui-Yuan HSU, Pramit MANNA, Karthik JANAKIRAMAN
  • Patent number: 11562902
    Abstract: Exemplary methods of semiconductor processing may include flowing a silicon-containing precursor into a processing region of a semiconductor processing chamber. A substrate may be housed within the processing region, and the substrate may be maintained at a temperature below or about 450° C. The methods may include striking a plasma of the silicon-containing precursor. The methods may include forming a layer of amorphous silicon on a semiconductor substrate. The layer of amorphous silicon may be characterized by less than or about 3% hydrogen incorporation.
    Type: Grant
    Filed: July 19, 2020
    Date of Patent: January 24, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Rui Cheng, Diwakar Kedlaya, Karthik Janakiraman, Gautam K. Hemani, Krishna Nittala, Alicia J. Lustgraaf, Zubin Huang, Brett Spaulding, Shashank Sharma, Kelvin Chan
  • Publication number: 20220406594
    Abstract: Embodiments of the present disclosure generally relate to processes for forming silicon- and boron-containing films for use in, e.g., spacer-defined patterning applications. In an embodiment, a spacer-defined patterning process is provided. The process includes disposing a substrate in a processing volume of a processing chamber, the substrate having patterned features formed thereon, and flowing a first process gas into the processing volume, the first process gas comprising a silicon-containing species, the silicon-containing species having a higher molecular weight than SiH4. The process further includes flowing a second process gas into the processing volume, the second process gas comprising a boron-containing species, and depositing, under deposition conditions, a conformal film on the patterned features, the conformal film comprising silicon and boron.
    Type: Application
    Filed: June 18, 2021
    Publication date: December 22, 2022
    Inventors: Aykut AYDIN, Rui CHENG, Karthik JANAKIRAMAN, Abhijit B. MALLICK, Takehito KOSHIZAWA, Bo QI
  • Patent number: 11532525
    Abstract: Methods and systems for controlling concentration profiles of deposited films using machine learning are provided. Data associated with a target concentration profile for a film to be deposited on a surface of a substrate during a deposition process for the substrate is provided as input to a trained machine learning model. One or more outputs of the trained machine learning model are obtained. Process recipe data identifying one or more sets of deposition process settings is determined from the one or more outputs. For each set of deposition process setting, an indication of a level of confidence that a respective set of deposition process settings corresponds to the target concentration profile for the film to be deposited on the substrate is also determined.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: December 20, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Anton V Baryshnikov, Aykut Aydin, Zubin Huang, Rui Cheng, Yi Yang, Diwakar Kedlaya, Venkatanarayana Shankaramurthy, Krishna Nittala, Karthik Janakiraman
  • Patent number: 11527408
    Abstract: The present disclosure provides forming nanostructures utilizing multiple patterning process with good profile control and feature transfer integrity. In one embodiment, a method for forming features on a substrate includes forming a first mandrel layer on a material layer disposed on a substrate. A first spacer layer is conformally formed on sidewalls of the first mandrel layer, wherein the first spacer layer comprises a doped silicon material. The first mandrel layer is selectively removed while keeping the first spacer layer. A second spacer layer is conformally formed on sidewalls of the first spacer layer and selectively removing the first spacer layer while keeping the second spacer layer.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: December 13, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Tzu-shun Yang, Rui Cheng, Karthik Janakiraman, Zubin Huang, Diwakar Kedlaya, Meenakshi Gupta, Srinivas Guggilla, Yung-chen Lin, Hidetaka Oshio, Chao Li, Gene Lee
  • Publication number: 20220384161
    Abstract: Exemplary methods of treating a chamber may include delivering a cleaning precursor to a remote plasma unit. The methods may include forming a plasma of the cleaning precursor. The methods may include delivering plasma effluents of the cleaning precursor to a processing region of a semiconductor processing chamber. The processing region may be defined by one or more chamber components. The one or more chamber components may include an oxide coating. The methods may include halting delivery of the plasma effluents. The methods may include treating the oxide coating with a hydrogen-containing material delivered to the processing region subsequent halting delivery of the plasma effluents.
    Type: Application
    Filed: May 25, 2021
    Publication date: December 1, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sarah Michelle Bobek, Ruiyun Huang, Abdul Aziz Khaja, Amit Bansal, Dong Hyung Lee, Ganesh Balasubramanian, Tuan Anh Nguyen, Sungwon Ha, Anjana M. Patel, Ratsamee Limdulpaiboon, Karthik Janakiraman, Kwangduk Douglas Lee
  • Publication number: 20220341034
    Abstract: Exemplary deposition methods may include delivering a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include delivering a dopant-containing precursor with the boron-containing precursor. The dopant-containing precursor may include a metal. The methods may include forming a plasma of all precursors within the processing region of the semiconductor processing chamber. The methods may include depositing a doped-boron material on a substrate disposed within the processing region of the semiconductor processing chamber. The doped-boron material may include greater than or about 80 at. % of boron in the doped-boron material.
    Type: Application
    Filed: April 26, 2021
    Publication date: October 27, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Aykut Aydin, Rui Cheng, Karthik Janakiraman
  • Patent number: 11462630
    Abstract: Embodiments described herein generally relate to doping of three dimensional (3D) structures on a substrate. In some embodiments, a conformal dopant containing film may be deposited over the 3D structures. Suitable dopants that may be incorporated in the film include halogen atoms. The film may be subsequently annealed to diffuse the dopants into the 3D structures.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 4, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rui Cheng, Yi Yang, Karthik Janakiraman, Abhijit Basu Mallick
  • Patent number: 11456173
    Abstract: Embodiments for processing a substrate are provided and include a method of trimming photoresist to provide photoresist profiles with smooth sidewall surfaces and to tune critical dimensions (CD) for the patterned features and/or a subsequently deposited dielectric layer. The method can include depositing a sacrificial structure layer on the substrate, depositing a photoresist on the sacrificial structure layer, and patterning the photoresist to produce a crude photoresist profile on the sacrificial structure layer. The method also includes trimming the photoresist with a plasma to produce a refined photoresist profile covering a first portion of the sacrificial structure layer while a second portion of the sacrificial structure layer is exposed, etching the second portion of the sacrificial structure layer to form patterned features disposed on the substrate, and depositing a dielectric layer on the patterned features.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: September 27, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Meenakshi Gupta, Rui Cheng, Srinivas Guggilla, Karthik Janakiraman, Diwakar N. Kedlaya, Zubin Huang
  • Patent number: 11443919
    Abstract: Systems and methods of using pulsed RF plasma to form amorphous and microcrystalline films are discussed herein. Methods of forming films can include (a) forming a plasma in a process chamber from a film precursor and (b) pulsing an RF power source to cause a duty cycle on time (TON) of a duty cycle of a pulse generated by the RF power source to be less than about 20% of a total cycle time (TTOT) of the duty cycle to form the film. The methods can further include (c) depositing a first film interlayer on a substrate in the process chamber; (d) subsequent to (c), purging the process chamber; and (e) subsequent to (d), introducing a hydrogen plasma to the process chamber. Further in the method, (b)-(e) are repeated to form a film. The film can have an in-film hydrogen content of less than about 10%.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: September 13, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Krishna Nittala, Diwakar N. Kedlaya, Karthik Janakiraman, Yi Yang, Rui Cheng
  • Publication number: 20220285232
    Abstract: Methods and systems for controlling concentration profiles of deposited films using machine learning are provided. Data associated with a target concentration profile for a film to be deposited on a surface of a substrate during a deposition process for the substrate is provided as input to a trained machine learning model. One or more outputs of the trained machine learning model are obtained. Process recipe data identifying one or more sets of deposition process settings is determined from the one or more outputs. For each set of deposition process setting, an indication of a level of confidence that a respective set of deposition process settings corresponds to the target concentration profile for the film to be deposited on the substrate is also determined.
    Type: Application
    Filed: March 3, 2021
    Publication date: September 8, 2022
    Inventors: Anton V. Baryshnikov, Aykut Aydin, Zubin Huang, Rui Cheng, Yi Yang, Diwakar Kedlaya, Venkatanarayana Shankaramurthy, Krishna Nittala, Karthik Janakiraman