Patents by Inventor KUN-MU LI

KUN-MU LI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10861971
    Abstract: The present disclosure relates to a transistor device having a strained source/drain region. In some embodiments, the transistor device has a gate structure arranged over a semiconductor substrate. The transistor device also has a strained source/drain region arranged within the semiconductor substrate along a side of the gate structure. The strained source/drain region includes a first layer and a second layer over the first layer. The first layer has a strain inducing component with a first concentration profile that decreases as a distance from the second layer decreases, and the second layer has the strain inducing component with a second non-zero concentration profile that is discontinuous with the first concentration profile.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsueh-Chang Sung, Tsz-Mei Kwok, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li
  • Publication number: 20200357921
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region. The second silicon germanium region comprises a portion in the opening. The second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap substantially free from germanium is over the second silicon germanium region.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Inventors: Hsueh-Chang Sung, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li, Tsz-Mei Kwok
  • Publication number: 20200343250
    Abstract: A static random access memory (SRAM) cell includes a semiconductor fin, a first gate structure, a second gate structure, an epitaxy structure, and a first fin sidewall structure. The first gate structure crosses the semiconductor fin to form a pull-down (PD) transistor. The second gate structure crosses the semiconductor fin to form a pull-gate (PG) transistor. The epitaxy structure is on the semiconductor fin and between the first and second gate structures. The first fin sidewall structure is on a first side of the epitaxy structure and between the first and second gate structures. A method for manufacturing the semiconductor device is also disclosed.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 29, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing LEE, Tsz-Mei KWOK, Ming-Hua YU, Kun-Mu LI
  • Publication number: 20200343381
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and a silicon germanium region extending into the semiconductor substrate and adjacent to the gate stack. The silicon germanium region has a top surface, with a center portion of the top surface recessed from edge portions of the top surface to form a recess. The edge portions are on opposite sides of the center portion.
    Type: Application
    Filed: July 10, 2020
    Publication date: October 29, 2020
    Inventors: Kun-Mu Li, Tsz-Mei Kwok, Hsueh-Chang Sung, Chii-Horng Li, Tze-Liang Lee
  • Publication number: 20200321450
    Abstract: A method of forming a semiconductor device having first and second fin structures on a substrate includes forming a first epitaxial region of the first fin structure and forming a second epitaxial region of the second fin structure. The method further includes forming a buffer region on the first epitaxial region of the first fin structure and performing an etch process to etch back a portion of the second epitaxial region. The buffer region helps to prevents etch back of a top surface of the first epitaxial region during the etch process. Further, a capping region is formed on the buffer region and the etched second epitaxial region.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsueh-Chang SUNG, Kun-Mu LI
  • Patent number: 10797173
    Abstract: An integrated circuit structure include a semiconductor substrate, a gate stack over the semiconductor substrate, and a recess extending into the semiconductor substrate, wherein the recess is adjacent to the gate stack. A silicon germanium region is disposed in the recess, wherein the silicon germanium region has a first p-type impurity concentration. A silicon cap substantially free from germanium is overlying the silicon germanium region. The silicon cap has a second p-type impurity concentration greater than the first p-type impurity concentration.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: October 6, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Chang Sung, Tsz-Mei Kwok, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li
  • Patent number: 10749029
    Abstract: A fin field effect transistor (Fin FET) device includes a fin structure extending in a first direction and protruding from an isolation insulating layer disposed over a substrate. The fin structure includes a well layer, an oxide layer disposed over the well layer and a channel layer disposed over the oxide layer. The Fin FET device includes a gate structure covering a portion of the fin structure and extending in a second direction perpendicular to the first direction. The Fin FET device includes a source and a drain. Each of the source and drain includes a stressor layer disposed in recessed portions formed in the fin structure. The stressor layer extends above the recessed portions and applies a stress to a channel layer of the fin structure under the gate structure. The Fin FET device includes a dielectric layer formed in contact with the oxide layer and the stressor layer in the recessed portions.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: August 18, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kun-Mu Li, Tsz-Mei Kwok, Ming-Hua Yu, Chan-Lon Yang
  • Patent number: 10734520
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region. The second silicon germanium region comprises a portion in the opening. The second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap substantially free from germanium is over the second silicon germanium region.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: August 4, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Chang Sung, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li, Tsz-Mei Kwok
  • Patent number: 10727131
    Abstract: The present disclosure describes a method to form silicon germanium (SiGe) source/drain regions with the incorporation of a lateral etch in the epitaxial source/drain growth process. For example, the method can include forming a plurality of fins on a substrate, where each of the plurality of fins has a first width. The SiGe source/drain regions can be formed on the plurality of fins, where each SiGe source/drain region has a second width in a common direction with the first width and a height. The method can also include selectively etching—e.g., via a lateral etch—the SiGe source/drain regions to decrease the second width of the SiGe source/drain regions. By decreasing the width of the SiGe source/drain regions, electrical shorts between neighboring fins can be prevented or minimized. Further, the method can include growing an epitaxial capping layer over the Si/Ge source/drain regions.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: July 28, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kun-Mu Li, Chih-Chiang Chang, Wen-Chu Hsiao, Che-Yu Lin, Wei-Siang Yang
  • Patent number: 10727342
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and a silicon germanium region extending into the semiconductor substrate and adjacent to the gate stack. The silicon germanium region has a top surface, with a center portion of the top surface recessed from edge portions of the top surface to form a recess. The edge portions are on opposite sides of the center portion.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: July 28, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kun-Mu Li, Tsz-Mei Kwok, Hsueh-Chang Sung, Chii-Horng Li, Tze-Liang Lee
  • Patent number: 10714487
    Abstract: A semiconductor device includes a transistor, an isolation structure, and a fin sidewall structure. The transistor includes a fin extending from a substrate and an epitaxy structure grown on the fin. The isolation structure is above the substrate. The fin sidewall structure is above the isolation structure and is on a sidewall of the epitaxy structure. A method for manufacturing the semiconductor device is also disclosed.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: July 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing Lee, Tsz-Mei Kwok, Ming-Hua Yu, Kun-Mu Li
  • Patent number: 10707328
    Abstract: A method of forming a semiconductor device having first and second fin structures on a substrate includes forming a first epitaxial region of the first fin structure and forming a second epitaxial region of the second fin structure. The method further includes forming a buffer region on the first epitaxial region of the first fin structure and performing an etch process to etch back a portion of the second epitaxial region. The buffer region helps to prevents etch back of a top surface of the first epitaxial region during the etch process. Further, a capping region is formed on the buffer region and the etched second epitaxial region.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: July 7, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsueh-Chang Sung, Kun-Mu Li
  • Publication number: 20200119006
    Abstract: A method for manufacturing an integrated circuit is provided. The method includes forming first and second semiconductor fins; forming first and second dielectric fin sidewall structures on opposite sidewalls of the first semiconductor fin, wherein the first dielectric fin sidewall structure is higher than the second dielectric fin sidewall structure, and the second dielectric fin sidewall structure is between the first and second semiconductor fins; recessing at least a portion of the first semiconductor fin between the first and second dielectric fin sidewall structures until a top of the recessed portion of the first semiconductor fin is lower than a top of the first dielectric fin sidewall structure; and forming a first epitaxy structure on the recessed portion of the first semiconductor fin.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing LEE, Kun-Mu LI, Ming-Hua YU, Tsz-Mei KWOK
  • Publication number: 20200105875
    Abstract: A semiconductor device, and a method of manufacturing, is provided. A first recess in the semiconductor layer may be disposed between a first dummy gate and a second dummy gate. A first spacer is formed on sidewalls of the first dummy gate and a second spacer is formed on sidewalls of the second dummy gate. The first and second spacers form triangular spacer extensions contacting the bottom surface of the first recess. After forming the first spacer and the second spacer, a second recess is formed in the semiconductor layer disposed between the first dummy gate and the second dummy gate. A source/drain region is epitaxially grown in the second recess.
    Type: Application
    Filed: June 17, 2019
    Publication date: April 2, 2020
    Inventors: Kun-Mu Li, Yen-Ru Lee, Hsueh-Chang Sung
  • Publication number: 20200105932
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a gate stack over an active region and a source/drain region in the active region adjacent the gate stack. The source/drain region includes a first semiconductor layer having a first germanium concentration and a second semiconductor layer over the first semiconductor layer. The second semiconductor layer has a second germanium concentration greater than the first germanium concentration. The source/drain region further includes a third semiconductor layer over the second semiconductor layer and a fourth semiconductor layer over the third semiconductor layer. The third semiconductor layer has a third germanium concentration greater than the second germanium concentration. The fourth semiconductor layer has a fourth germanium concentration less than the third germanium concentration.
    Type: Application
    Filed: July 8, 2019
    Publication date: April 2, 2020
    Inventors: Kun-Mu Li, Hsueh-Chang Sung
  • Publication number: 20200035831
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region. The second silicon germanium region comprises a portion in the opening. The second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap substantially free from germanium is over the second silicon germanium region.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Hsueh-Chang Sung, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li, Tsz-Mei Kwok
  • Patent number: 10510753
    Abstract: An integrated circuit includes first and second semiconductor fins, first and second epitaxy structures, and first and second dielectric fin sidewall structures. The first and second epitaxy structures are respectively on the first and second semiconductor fins. The first epitaxy structure and the second epitaxy structure are merged together. The first and second dielectric fin sidewall structures are respectively on opposite first and second sidewalls of the first epitaxy structure. The first sidewall of the first epitaxy structure faces the second epitaxy structure. The first dielectric fin sidewall structure is shorter than the second dielectric fin sidewall structure.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: December 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing Lee, Kun-Mu Li, Ming-Hua Yu, Tsz-Mei Kwok
  • Patent number: 10475926
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region. The second silicon germanium region comprises a portion in the opening. The second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap substantially free from germanium is over the second silicon germanium region.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: November 12, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Chang Sung, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li, Tsz-Mei Kwok
  • Publication number: 20190280115
    Abstract: A semiconductor device includes a gate structure formed over a channel region of the semiconductor device, a source/drain region adjacent the channel region, and an electrically conductive contact layer over the source/drain region. The source/drain region includes a first epitaxial layer having a first material composition and a second epitaxial layer formed over the first epitaxial layer. The second epitaxial layer has a second material composition different from the first composition. The electrically conductive contact layer is in contact with the first and second epitaxial layers. A bottom of the electrically conductive contact layer is located below an uppermost portion of the first epitaxial layer.
    Type: Application
    Filed: May 20, 2019
    Publication date: September 12, 2019
    Inventors: Kun-Mu LI, Liang-Yi CHEN, Wen-Chu HSIAO
  • Patent number: 10297690
    Abstract: A semiconductor device includes a gate structure formed over a channel region of the semiconductor device, a source/drain region adjacent the channel region, and an electrically conductive contact layer over the source/drain region. The source/drain region includes a first epitaxial layer having a first material composition and a second epitaxial layer formed over the first epitaxial layer. The second epitaxial layer has a second material composition different from the first composition. The electrically conductive contact layer is in contact with the first and second epitaxial layers. A bottom of the electrically conductive contact layer is located below an uppermost portion of the first epitaxial layer.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: May 21, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kun-Mu Li, Liang-Yi Chen, Wen-Chu Hsiao